Spaces:
Sleeping
Sleeping
File size: 9,465 Bytes
f1052d9 a67a3c8 8aec9cb 210ed13 b1328e8 210ed13 b4f9b4b a58c3bb ecc81cb bb63a49 41a4bcd ce53544 842b929 ce53544 bb63a49 a0d20c5 bb63a49 a0d20c5 9a43a98 bb63a49 552490f 1eb986b 9a43a98 552490f 9a43a98 c526e20 263cf43 6d985a6 0fc6336 e1bd813 552490f e9fa1e4 552490f 011a20c 38d67a2 9f1f2bf c6d02b3 9f1f2bf 1d16cc9 9f1f2bf c6d02b3 2c7ffe4 a597e6b fd34825 706151f c6e402b 84291d5 7206ba2 a597e6b 48e1ac1 758f177 84291d5 f2fa35d 369a3fa 397731d 544df84 f2fa35d eb977a1 83d3e5a b4f9b4b 59db4bc c526e20 7219c3f bbff51c 0fc6336 c526e20 8680805 7c7685a 7219c3f 1eb986b 9a43a98 011a20c 9a43a98 42f41a3 e9fa1e4 b522f5d bb63a49 9a43a98 378fec2 cde99b9 9642724 7219c3f f2d1065 7219c3f 67f570c 59eda4a f2d1065 67f570c 9fb409b 86f936d 6f05fa0 c526e20 011a20c 8eabfee c526e20 edc4d19 cb17486 59eda4a c526e20 cb17486 0e5f0ad cb17486 83b0d34 7219c3f a9dd5f4 f2d1065 91229ed 86f936d 91229ed 86e141f 6d985a6 9a43a98 c526e20 e09a947 c526e20 d07943a 59db4bc 552490f c526e20 2c20848 552490f 7219c3f a36d15d 7219c3f 53b9153 7219c3f 552490f c009b83 552490f c009b83 bb63a49 552490f 59eda4a c526e20 552490f 4a4e06a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from transformers import pipeline
from torch import multiprocessing as mp, nn
#from torch.multiprocessing import Pool
#from pathos.multiprocessing import ProcessPool as Pool
from pathos.threading import ThreadPool as Pool
from diffusers.pipelines.flux import FluxPipeline
from diffusers.utils import export_to_gif, load_image
from diffusers.models.modeling_utils import ModelMixin
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
import jax
import jax.numpy as jnp
last_motion=None
fps=15
time=2
device = "cuda"
dtype = torch.float16
result=[]
step = 30
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
#base = "emilianJR/epiCRealism"
base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
#vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
css="""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
max-width: 15cm;
}
.image-container {
aspect-ratio: 576 / 1024 !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
#def forest_schnell():
# PIPE = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to("cuda")
# return PIPE
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
translated = text
try:
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
if trgt_lang == lang:
translated = trgt_text
except:
print(f'Translation Warning: Failed To Translate!')
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=65)
def Piper(image,positive,negative,motion):
global last_motion
global ip_loaded
#pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
if last_motion != motion:
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.set_adapters(["motion"], [0.7])
last_motion = motion
pipe.to(device)
return pipe(
prompt=positive,
negative_prompt=negative,
height=1024,
width=576,
ip_adapter_image=image.convert("RGB").resize((576,1024)),
num_inference_steps=step,
guidance_scale=7.5,
num_frames=(fps*time)
)
def infer(pm):
print("infer: started")
p1 = pm["p"]
name = generate_random_string(12)+".png"
neg = pm["n"]
_do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
if p1 != "":
_do.append(f'{p1}')
posi = " ".join(_do)
if neg == "" or pm["i"] == None or posi == "":
return None
out = Piper(pm["i"],posi,neg,pm["m"])
export_to_gif(out.frames[0],name,fps=fps)
return name
def run(i,m,p1,p2,*result):
p1_en = translate(p1,"english")
p2_en = translate(p2,"english")
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
ln = len(result)
print("images: "+str(ln))
rng = list(range(ln))
arr = [pm for _ in rng]
pool = Pool(ln)
out = list(pool.imap(infer,arr))
pool.close()
pool.join()
pool.clear()
return out
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = DDIMScheduler(
clip_sample=False,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
timestep_spacing="trailing",
steps_offset=1
)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe.enable_vae_slicing()
pipe.enable_free_init(method="butterworth", use_fast_sampling=False)
mp.set_start_method("spawn", force=True)
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# MULTI-LANGUAGE IMAGE GENERATOR
""")
with gr.Row():
img = gr.Image(type="pil")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="INCLUDE",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="EXCLUDE",
container=False,
max_lines=1
)
with gr.Row():
motion = gr.Dropdown(
label='Motion',
show_label=False,
choices=[
("(None)", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="",
interactive=True
)
with gr.Row():
run_button = gr.Button("START",elem_classes="btn",scale=0)
with gr.Row():
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
gr.on(
triggers=[run_button.click, prompt.submit, prompt2.submit],
fn=run,inputs=[img,motion,prompt,prompt2,*result],outputs=result
)
demo.queue().launch()
|