File size: 9,465 Bytes
f1052d9
a67a3c8
8aec9cb
210ed13
b1328e8
210ed13
b4f9b4b
a58c3bb
 
ecc81cb
bb63a49
41a4bcd
ce53544
842b929
ce53544
bb63a49
 
a0d20c5
bb63a49
a0d20c5
9a43a98
bb63a49
 
 
552490f
1eb986b
9a43a98
552490f
 
 
9a43a98
c526e20
 
263cf43
 
6d985a6
0fc6336
e1bd813
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9fa1e4
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
011a20c
 
 
38d67a2
9f1f2bf
c6d02b3
9f1f2bf
1d16cc9
9f1f2bf
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
84291d5
 
f2fa35d
369a3fa
397731d
 
 
 
 
544df84
f2fa35d
eb977a1
83d3e5a
 
 
b4f9b4b
 
 
 
 
59db4bc
c526e20
7219c3f
bbff51c
0fc6336
c526e20
8680805
7c7685a
7219c3f
 
 
 
 
1eb986b
 
9a43a98
011a20c
9a43a98
42f41a3
e9fa1e4
 
b522f5d
bb63a49
9a43a98
378fec2
cde99b9
9642724
7219c3f
f2d1065
 
7219c3f
67f570c
59eda4a
f2d1065
67f570c
 
 
9fb409b
86f936d
6f05fa0
 
c526e20
011a20c
 
8eabfee
c526e20
edc4d19
cb17486
59eda4a
c526e20
cb17486
0e5f0ad
cb17486
83b0d34
7219c3f
a9dd5f4
f2d1065
91229ed
 
 
86f936d
91229ed
86e141f
6d985a6
9a43a98
 
 
 
 
 
 
c526e20
e09a947
c526e20
d07943a
59db4bc
552490f
 
 
 
 
 
 
c526e20
2c20848
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7219c3f
 
a36d15d
7219c3f
53b9153
7219c3f
 
 
 
 
 
 
 
 
 
 
 
552490f
c009b83
552490f
c009b83
 
bb63a49
552490f
59eda4a
c526e20
552490f
4a4e06a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from transformers import pipeline
from torch import multiprocessing as mp, nn
#from torch.multiprocessing import Pool
#from pathos.multiprocessing import ProcessPool as Pool
from pathos.threading import ThreadPool as Pool
from diffusers.pipelines.flux import FluxPipeline
from diffusers.utils import export_to_gif, load_image
from diffusers.models.modeling_utils import ModelMixin
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
import jax
import jax.numpy as jnp

last_motion=None
fps=15
time=2
device = "cuda"
dtype = torch.float16
result=[]
step = 30
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
#base = "emilianJR/epiCRealism"
base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
#vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)

css="""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
    width: 100%;
    text-align: center;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto;
    max-width: 15cm;
}
.image-container {
    aspect-ratio: 576 / 1024 !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(>.btn) {
    display: flex;
    justify-content: space-evenly;
    align-items: center;
}
.btn {
    display: flex;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
    document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""

#def forest_schnell():
#    PIPE = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to("cuda")
#    return PIPE
    
def translate(text,lang):
    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    content = resp.content
    html = fromstring(content)
    translated = text
    try:
        src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
        trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
        src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
        trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
        if trgt_lang == lang:
            translated = trgt_text
    except:
        print(f'Translation Warning: Failed To Translate!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=65)
def Piper(image,positive,negative,motion):
    global last_motion
    global ip_loaded

    #pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)

    if last_motion != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.set_adapters(["motion"], [0.7])
        last_motion = motion

    pipe.to(device)
    
    return pipe(
        prompt=positive,
        negative_prompt=negative,
        height=1024,
        width=576,
        ip_adapter_image=image.convert("RGB").resize((576,1024)),
        num_inference_steps=step,
        guidance_scale=7.5,
        num_frames=(fps*time)
    )

def infer(pm):
        print("infer: started")
    
        p1 = pm["p"]
        name = generate_random_string(12)+".png"
        neg = pm["n"]

        _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
        if p1 != "":
            _do.append(f'{p1}')
        posi = " ".join(_do)

        if neg == "" or pm["i"] == None or posi == "":
            return None
        out = Piper(pm["i"],posi,neg,pm["m"])
        export_to_gif(out.frames[0],name,fps=fps)
        return name

def run(i,m,p1,p2,*result):
    
        p1_en = translate(p1,"english")
        p2_en = translate(p2,"english")
        pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
        ln = len(result)
        print("images: "+str(ln))
        rng = list(range(ln))
    
        arr = [pm for _ in rng]
        pool = Pool(ln)
        out = list(pool.imap(infer,arr))
        pool.close()
        pool.join()
        pool.clear()

        return out

pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = DDIMScheduler(
        clip_sample=False,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="linear",
        timestep_spacing="trailing",
        steps_offset=1
)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe.enable_vae_slicing()
pipe.enable_free_init(method="butterworth", use_fast_sampling=False)

mp.set_start_method("spawn", force=True)

with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # MULTI-LANGUAGE IMAGE GENERATOR
        """)
        with gr.Row():
            img = gr.Image(type="pil")
        with gr.Row():
            prompt = gr.Textbox(
                elem_id="prompt",
                placeholder="INCLUDE",
                container=False,
                max_lines=1
            )
        with gr.Row():
            prompt2 = gr.Textbox(
                elem_id="prompt2",
                placeholder="EXCLUDE",
                container=False,
                max_lines=1
            )
        with gr.Row():
                motion = gr.Dropdown(
                    label='Motion',
                    show_label=False,
                    choices=[
                        ("(None)", ""),
                        ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                        ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                        ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                        ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                        ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                        ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                        ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                        ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                    ],
                    value="",
                    interactive=True
                )
        with gr.Row():
                run_button = gr.Button("START",elem_classes="btn",scale=0)
        with gr.Row():
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                
    gr.on(
            triggers=[run_button.click, prompt.submit, prompt2.submit],
            fn=run,inputs=[img,motion,prompt,prompt2,*result],outputs=result
    )
    demo.queue().launch()