File size: 7,956 Bytes
f1052d9
a67a3c8
95af88e
210ed13
b1328e8
210ed13
b4f9b4b
a58c3bb
 
ecc81cb
a58c3bb
 
f285313
62c5b0c
f8fb4da
8d6fc68
 
210ed13
f8fb4da
210ed13
 
57971cb
210ed13
 
57971cb
210ed13
 
3ed5fef
c6d02b3
 
 
 
1d16cc9
 
c6d02b3
 
 
2c7ffe4
 
 
f487489
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
c6d02b3
dad7330
 
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
c6d02b3
84291d5
 
0307843
f2fa35d
f487489
369a3fa
397731d
 
 
 
369a3fa
397731d
544df84
f2fa35d
eb977a1
0307843
83d3e5a
 
 
b4f9b4b
 
 
 
 
905e20c
dd2b7f9
1f747ea
7300f25
21868b9
 
dd2b7f9
f285313
 
452be41
 
dd2b7f9
b4f9b4b
ae2310a
 
0c095d9
d51c50c
0c095d9
d51c50c
0c095d9
d51c50c
0c095d9
d51c50c
dd2b7f9
b4f9b4b
210ed13
 
a345db9
 
 
840cd7b
0ec3daa
 
840cd7b
a345db9
0ec3daa
a345db9
763a02d
34c1550
33f3309
 
 
210ed13
0ec3daa
 
33f3309
f285313
21868b9
210ed13
2daa864
 
 
210ed13
 
aac4d05
32ecfac
653a527
 
0b4c2e7
 
 
210ed13
34c1550
210ed13
34c1550
210ed13
c96cc3a
aac4d05
210ed13
 
750a4e9
210ed13
02471b0
 
aac4d05
34c1550
dd2b7f9
 
 
 
653a527
dd2b7f9
 
34c1550
02471b0
 
 
 
 
34c1550
f285313
84aebcc
 
 
f285313
84aebcc
 
 
f285313
84aebcc
 
 
 
 
 
 
f285313
 
 
 
84aebcc
f285313
210ed13
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from diffusers import AutoPipelineForText2Image
#from tempfile import NamedTemporaryFile
from pathos.multiprocessing import Pool

#model_id = "runwayml/stable-diffusion-v1-5"
#model_id = "kandinsky-community/kandinsky-3"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"

device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)
else: 
    pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)

def translate(text,lang):
    
    if text == None or lang == None:
        return ""
        
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
    
    if text == "" or lang == "":
        return ""

    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")

    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'

    print(url)
    
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    
    content = resp.content
    html = fromstring(content)
    
    translated = text

    try:
        src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
        trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
        src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
        trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
        
        if trgt_lang == lang:
            translated = trgt_text
    except:
        print(f'Translation Warning: Failed To Translate!')

    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=35)
def Piper(_do,_dont):
    return pipe(
        _do,
        height=320,
        width=576,
        negative_prompt=_dont,
        num_inference_steps=50,
        guidance_scale=2
    )

def infer(prompt,prompt2):
    name = generate_random_string(12)+".png"
    prompt_en = translate(prompt,"english")
    prompt2_en = translate(prompt2,"english")
    if prompt == None or prompt.strip() == "":
        _do = 'realistic natural sharp light vivid vintage amazing yet reasonable scene coloring'
    else:
        _do = f'realistic natural sharp light vivid vintage { prompt_en } amazing yet reasonable scene coloring'
    if prompt2 == None or prompt2.strip() == "":
        _dont = 'smooth texture, fictional proportions, blurred content, distorted items, deformed palms, logos and signs, texts and prints'
    else:
        _dont = f'{prompt2_en} where in {prompt_en}, smooth texture, fictional proportions, blurred content, distorted items, deformed palms, logos and signs, texts and prints'
    image = Piper(_do,_dont).images[0].save(name)
    return name

css="""
input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    direction: rtl !important;
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
    width: 100% !important;
    text-align: center !important;
    display: block !important;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto !important;
    max-width: 15cm !important;
 }
.image-container {
    aspect-ratio: 576 / 320 !important;
}
.dropdown-arrow {
    display: none !important;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","27");
    document.querySelector("div#prompt2 input").setAttribute("maxlength","27");
}
"""

if torch.cuda.is_available():
    power_device = "诪注讘讚 讙专驻讬"
else:
    power_device = "诪注讘讚 诇讜讙讬"

result = []
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # 诪讞讜诇诇 转诪讜谞讜转 - {power_device}
        """)
        with gr.Row():
            prompt = gr.Textbox(
                elem_id="prompt",
                placeholder="诪讛 *讻谉* 诇讛讜住讬祝",
                container=False,
                rtl=True,
                max_lines=1
            )
        with gr.Row():
            prompt2 = gr.Textbox(
                elem_id="prompt2",
                placeholder="诪讛 *诇讗* 诇讛讜住讬祝",
                container=False,
                rtl=True,
                max_lines=1
            )
        with gr.Row():
            run_button = gr.Button("讛转讞诇讛")
        with gr.Row():
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
        with gr.Row():
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
        with gr.Row():
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
        with gr.Row():
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
            result.append(gr.Image(elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))

    def ret(idx):
        result[idx] = infer(prompt,prompt2)
    def rets():
        Pool().map(ret,[range(12)])
    run_button.click(rets)

demo.queue().launch()