File size: 10,323 Bytes
f1052d9
2109512
a67a3c8
8aec9cb
210ed13
b1328e8
210ed13
b4f9b4b
a58c3bb
 
ecc81cb
bb63a49
41a4bcd
ce53544
842b929
ce53544
bb63a49
 
a0d20c5
bb63a49
a0d20c5
9a43a98
bb63a49
 
9a17eef
 
c872ed4
 
d1da1b3
2109512
 
 
 
d970ab6
2109512
 
d1da1b3
42c98a9
d1da1b3
 
 
c872ed4
552490f
 
 
562b4d5
a1e8f93
 
562b4d5
 
 
0fc6336
1b7ec1b
552490f
6d89f09
aaacefd
 
01cfb27
6d89f09
562b4d5
73b6943
562b4d5
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f75dc
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f1f2bf
c6d02b3
9f1f2bf
1d16cc9
9f1f2bf
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
84291d5
 
f2fa35d
369a3fa
397731d
 
 
 
 
544df84
f2fa35d
eb977a1
83d3e5a
 
 
b4f9b4b
 
 
 
 
aaacefd
c526e20
7219c3f
bbff51c
0fc6336
7c7685a
7219c3f
 
 
1b7ec1b
7219c3f
 
1eb986b
3f070dc
b7e54fe
 
 
 
 
 
 
 
 
 
 
9a43a98
011a20c
9a43a98
42f41a3
84810a2
 
 
bb63a49
84810a2
378fec2
cde99b9
9642724
7219c3f
f2d1065
 
7219c3f
67f570c
59eda4a
f2d1065
73b6943
67f570c
73b6943
 
86f936d
b7e54fe
6f05fa0
c526e20
011a20c
 
8eabfee
c526e20
edc4d19
cb17486
59eda4a
c526e20
cb17486
4c3ed0f
cb17486
83b0d34
7219c3f
a9dd5f4
f2d1065
91229ed
 
 
86f936d
91229ed
86e141f
562b4d5
9a43a98
 
 
 
 
 
 
c526e20
a1e8f93
e09a947
c526e20
6d89f09
59db4bc
552490f
 
 
 
 
 
 
c526e20
98931ab
552490f
 
 
42c98a9
552490f
 
 
 
 
 
42c98a9
552490f
 
 
2381c5b
7219c3f
42c98a9
98931ab
 
7219c3f
42c98a9
7219c3f
 
 
 
 
 
 
 
 
 
 
 
552490f
c009b83
552490f
c009b83
 
bb63a49
552490f
59eda4a
c526e20
552490f
452af5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import logging
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from transformers import pipeline
from torch import multiprocessing as mp, nn
#from torch.multiprocessing import Pool
#from pathos.multiprocessing import ProcessPool as Pool
from pathos.threading import ThreadPool as Pool
from diffusers.pipelines.flux import FluxPipeline
from diffusers.utils import export_to_gif, load_image
from diffusers.models.modeling_utils import ModelMixin
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
import jax
import jax.numpy as jnp
import sys
import warnings

warnings.filterwarnings("ignore")

root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
handler2 = logging.StreamHandler(sys.stderr)
handler2.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler2.setFormatter(formatter)
root.addHandler(handler2)

last_motion=None
dtype = torch.float16
result=[]
device = "cuda"
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"
#base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
#vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)

fast=True
fps=10
time=1
width=384
height=768
step = 25
accu=10

css="""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
    width: 100%;
    text-align: center;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto;
    max-width: 15cm;
}
.image-container {
    aspect-ratio: """+str(width)+"/"+str(height)+""" !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(>.btn) {
    display: flex;
    justify-content: space-evenly;
    align-items: center;
}
.btn {
    display: flex;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
    document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""

def translate(text,lang):
    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    content = resp.content
    html = fromstring(content)
    translated = text
    try:
        src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
        trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
        src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
        trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
        if trgt_lang == lang:
            translated = trgt_text
    except:
        print(f'Translation Warning: Failed To Translate!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=65)
def Piper(image,positive,negative,motion):
    global last_motion
    global ip_loaded

    if last_motion != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.fuse_lora()
            pipe.set_adapters(["motion"], [0.7])
        last_motion = motion

    pipe.to(device,dtype)

    if negative=="":
        return pipe(
            prompt=positive,
            height=height,
            width=width,
            ip_adapter_image=image.convert("RGB").resize((width,height)),
            num_inference_steps=step,
            guidance_scale=accu,
            num_frames=(fps*time)
        )
    
    return pipe(
        prompt=positive,
        negative_prompt=negative,
        height=height,
        width=width,
        ip_adapter_image=image.convert("RGB").resize((width,height)),
        num_inference_steps=step,
        guidance_scale=accu,
        num_frames=(fps*time)
    )

def infer(pm):
        print("infer: started")
    
        p1 = pm["p"]
        name = generate_random_string(12)+".png"
        neg = pm["n"]

        _do = ['beautiful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
        if p1 != "":
            _do.append(p1)
        posi = ", ".join(_do)

        if pm["i"] == None:
            return None
        out = Piper(pm["i"],posi,neg,pm["m"])
        export_to_gif(out.frames[0],name,fps=fps)
        return name

def run(i,m,p1,p2,*result):
    
        p1_en = translate(p1,"english")
        p2_en = translate(p2,"english")
        pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
        ln = len(result)
        print("Threads: "+str(ln))
        rng = list(range(ln))
    
        arr = [pm for _ in rng]
        pool = Pool(ln)
        out = list(pool.imap(infer,arr))
        pool.close()
        pool.join()
        pool.clear()

        return out

pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = DDIMScheduler(
        clip_sample=False,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="linear",
        timestep_spacing="trailing",
        steps_offset=1
)
#pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe.enable_vae_slicing()
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)

mp.set_start_method("spawn", force=True)

with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # MULTI-LANGUAGE IMAGE GENERATOR
        """)
        with gr.Row():
            img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil")
        with gr.Row():
            prompt = gr.Textbox(
                elem_id="prompt",
                placeholder="INCLUDE",
                container=False,
                max_lines=1
            )
        with gr.Row():
            prompt2 = gr.Textbox(
                elem_id="prompt2",
                placeholder="EXCLUDE",
                container=False,
                max_lines=1
            )
        with gr.Row():
                motion = gr.Dropdown(
                    label='CAMERA',
                    show_label=True,
                    container=True,
                    choices=[
                        ("(No Effect)", ""),
                        ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                        ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                        ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                        ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                        ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                        ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                        ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                        ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                    ],
                    value="",
                    interactive=True
                )
        with gr.Row():
                run_button = gr.Button("START",elem_classes="btn",scale=0)
        with gr.Row():
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                
    gr.on(
            triggers=[run_button.click, prompt.submit, prompt2.submit],
            fn=run,inputs=[img,motion,prompt,prompt2,*result],outputs=result
    )
    demo.queue().launch()