Spaces:
Running
Running
import gradio as gr | |
#from tempfile import NamedTemporaryFile | |
import numpy as np | |
import random | |
import string | |
from diffusers import StableDiffusionPipeline as DiffusionPipeline | |
import torch | |
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor | |
import requests | |
from lxml.html.soupparser import fromstring | |
pool = ProcessPoolExecutor(4) | |
pool.__enter__() | |
model_id = "runwayml/stable-diffusion-v1-5" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True) | |
pipe = pipe.to(device) | |
def translate(text,lang): | |
html_str = requests.get( url = "https://translate.google.com", params = {"sl": "auto", "tl": lang, "op": "translate", "text": text} ).text() | |
tree = fromstring(html_str) | |
translated = tree.xpath('span[lang="'+lang+'"]/span/span/text()')[0] | |
return translated | |
def generate_random_string(length): | |
characters = string.ascii_letters + string.digits | |
return ''.join(random.choice(characters) for _ in range(length)) | |
def infer(prompt): | |
name = generate_random_string(12)+".png" | |
image = pipe(translate(prompt,"en")).images[0].save(name) | |
return name | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Image Generator | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False, type='filepath') | |
run_button.click( | |
fn = infer, | |
inputs = [prompt], | |
outputs = [result] | |
) | |
demo.queue().launch() |