Spaces:
Running
Running
import os | |
import re | |
import spaces | |
import random | |
import string | |
import torch | |
import requests | |
import gradio as gr | |
import numpy as np | |
from lxml.html import fromstring | |
from transformers import pipeline | |
from torch.multiprocessing import Pool, Process, set_start_method | |
#from pathos.multiprocessing import ProcessPool as Pool | |
#from pathos.threading import ThreadPool as Pool | |
#from diffusers.pipelines.flux import FluxPipeline | |
#from diffusers.utils import export_to_gif | |
#from huggingface_hub import hf_hub_download | |
#from safetensors.torch import load_file | |
from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline | |
from diffusers.utils import load_image | |
#import jax | |
#import jax.numpy as jnp | |
import torch._dynamo | |
set_start_method("spawn", force=True) | |
torch._dynamo.config.suppress_errors = True | |
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=os.getenv("hf_token")).to(device) | |
#pipe2 = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to(device) | |
#pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) | |
PIPE = None | |
def pipe_t2i(): | |
global PIPE | |
if PIPE is None: | |
PIPE = pipeline("text-to-image", model="black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", tokenizer="black-forest-labs/FLUX.1-schnell", device=-1, token=os.getenv("hf_token")) | |
return PIPE | |
def pipe_i2i(): | |
global PIPE | |
if PIPE is None: | |
PIPE = pipeline("image-to-image", model="stabilityai/stable-diffusion-xl-refiner-1.0", tokenizer="stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, device=-1, variant="fp16", use_safetensors=True) | |
PIPE.unet = torch.compile(PIPE.unet, mode="reduce-overhead", fullgraph=True) | |
return PIPE | |
def translate(text,lang): | |
if text == None or lang == None: | |
return "" | |
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() | |
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() | |
if text == "" or lang == "": | |
return "" | |
if len(text) > 38: | |
raise Exception("Translation Error: Too long text!") | |
user_agents = [ | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' | |
] | |
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() | |
query_text = f'Please translate {padded_chars}, into {lang}' | |
url = f'https://www.google.com/search?q={query_text}' | |
resp = requests.get( | |
url = url, | |
headers = { | |
'User-Agent': random.choice(user_agents) | |
} | |
) | |
content = resp.content | |
html = fromstring(content) | |
translated = text | |
try: | |
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip() | |
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip() | |
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip() | |
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip() | |
if trgt_lang == lang: | |
translated = trgt_text | |
except: | |
print(f'Translation Warning: Failed To Translate!') | |
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() | |
print(ret) | |
return ret | |
def generate_random_string(length): | |
characters = string.ascii_letters + string.digits | |
return ''.join(random.choice(characters) for _ in range(length)) | |
def Piper(_do): | |
pipe = pipe_t2i() | |
try: | |
retu = pipe( | |
_do, | |
height=512, | |
width=512, | |
num_inference_steps=4, | |
max_sequence_length=256, | |
guidance_scale=0 | |
) | |
return retu | |
except Exception as e: | |
print(e) | |
return None | |
def Piper2(img,posi,neg): | |
pipe = pipe_i2i() | |
try: | |
retu = pipe2( | |
prompt=posi, | |
negative_prompt=neg, | |
image=img | |
) | |
return retu | |
except Exception as e: | |
print(e) | |
return None | |
def tok(txt): | |
toks = pipe.tokenizer(txt)['input_ids'] | |
print(toks) | |
return toks | |
def infer(p1,p2): | |
name = generate_random_string(12)+".png" | |
_do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused'] | |
if p1 != "": | |
_do.append(f'{p1}') | |
if p2 != "": | |
_dont = f'{p2} where in {p1}' | |
neg = _dont | |
else: | |
neg = None | |
output = Piper('A '+" ".join(_do)) | |
if output == None: | |
return None | |
else: | |
output.images[0].save(name) | |
if neg == None: | |
return name | |
img = load_image(name).convert("RGB") | |
output2 = Piper2(img,p1,neg) | |
if output2 == None: | |
return None | |
else: | |
output2.images[0].save("_"+name) | |
return "_"+name | |
css=""" | |
input, input::placeholder { | |
text-align: center !important; | |
} | |
*, *::placeholder { | |
direction: ltr !important; | |
font-family: Suez One !important; | |
} | |
h1,h2,h3,h4,h5,h6,span,p,pre { | |
width: 100% !important; | |
text-align: center !important; | |
display: block !important; | |
} | |
footer { | |
display: none !important; | |
} | |
#col-container { | |
margin: 0 auto !important; | |
max-width: 15cm !important; | |
} | |
.image-container { | |
aspect-ratio: 448 / 448 !important; | |
} | |
.dropdown-arrow { | |
display: none !important; | |
} | |
*:has(.btn), .btn { | |
width: 100% !important; | |
margin: 0 auto !important; | |
} | |
""" | |
js=""" | |
function custom(){ | |
document.querySelector("div#prompt input").setAttribute("maxlength","38") | |
document.querySelector("div#prompt2 input").setAttribute("maxlength","38") | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: | |
result = [] | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# MULTI-LANGUAGE IMAGE GENERATOR | |
""") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
elem_id="prompt", | |
placeholder="INCLUDE", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
prompt2 = gr.Textbox( | |
elem_id="prompt2", | |
placeholder="EXCLUDE", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
run_button = gr.Button("START",elem_classes="btn",scale=0) | |
with gr.Row(): | |
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) | |
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) | |
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) | |
def _ret(p): | |
print(f'Starting!') | |
v = infer(p["a"],p["b"]) | |
print(f'Finished!') | |
return v | |
def _rets(p1,p2): | |
p1_en = translate(p1,"english") | |
p2_en = translate(p2,"english") | |
p = {"a":p1_en,"b":p2_en} | |
ln = len(result) | |
rng = range(ln) | |
p_arr = [p for _ in rng] | |
pool = Pool(processes=ln) | |
lst = list( pool.imap( _ret, p_arr ) ) | |
pool.clear() | |
return lst | |
#return list( _ret(p1_en,p2_en) ) | |
run_button.click(fn=_rets,inputs=[prompt,prompt2],outputs=result) | |
demo.queue().launch(server_port=6900) |