AMZ-Listing-Pro / app.py
mroccuper's picture
Update app.py
b455c9b verified
raw
history blame
21.8 kB
import gradio as gr
import google.generativeai as genai
import re
import json
import os # Good practice to import os if using env variables later
# --- Constants for Limits ---
TITLE_MAX_LEN = 60
BRAND_NAME_MAX_LEN = 50
BULLET_POINT_MAX_LEN = 256
BULLET_POINT_MIN_LEN = 240 # Keep this if you want to check minimum length later
def count_characters(text):
"""Count characters in text."""
return len(text) if text else 0
def format_output(title, brand_name, bullet1, bullet2, suggested_keywords=None):
"""Format the output with character counts (reflecting potentially truncated lengths)."""
# Display the actual length after potential truncation
output = f"Title ({count_characters(title)}/{TITLE_MAX_LEN} characters):\n{title}\n\n"
output += f"Brand Name ({count_characters(brand_name)}/{BRAND_NAME_MAX_LEN} characters):\n{brand_name}\n\n"
output += f"Bullet Point 1 ({count_characters(bullet1)}/{BULLET_POINT_MAX_LEN} characters):\n{bullet1}\n\n"
output += f"Bullet Point 2 ({count_characters(bullet2)}/{BULLET_POINT_MAX_LEN} characters):\n{bullet2}"
if suggested_keywords:
output += f"\n\nSuggested Additional Keywords:\n{suggested_keywords}"
return output
def generate_prompt(quote, niche, target, keywords):
"""Generate the prompt for Gemini API."""
# Keep the detailed prompt instructions as they help guide the AI
combined_prompt = f"""You are an Amazon Merch on Demand SEO expert specializing in creating optimized t-shirt and apparel listings.
MY INPUT IS ABOUT: A {niche} t-shirt with the design/quote: "{quote}" for {target}.
YOU MUST ONLY create an Amazon apparel listing about that EXACT input - no substitutions or different themes allowed.
Generate a listing that includes:
1. Title (try for exactly {TITLE_MAX_LEN} characters): Must include "{niche}" and reference the design/quote "{quote}" and target audience "{target}"
2. Brand Name (try for 34-{BRAND_NAME_MAX_LEN} characters): Create a fitting brand name for this specific {niche} apparel for {target}
3. Bullet Point 1 (try for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters): Highlight key features using ALL CAPS for the first 2-3 words. Focus ONLY on the design, quote, and niche theme.
4. Bullet Point 2 (try for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters): Highlight additional features using ALL CAPS for the first 2-3 words. Focus ONLY on the design, quote, and niche theme.
IMPORTANT RULES — STRICT ENFORCEMENT:
- DO NOT include generic phrases like "PREMIUM QUALITY" or references to material quality
- DO NOT include phrases like "This comfortable and stylish tee is made with high-quality materials for a soft feel and long-lasting wear"
- Bullet point 1 must be between {BULLET_POINT_MIN_LEN} and {BULLET_POINT_MAX_LEN} characters. Aim for the higher end.
- Bullet point 2 must be between {BULLET_POINT_MIN_LEN} and {BULLET_POINT_MAX_LEN} characters. Aim for the higher end.
- DO NOT exceed the character limits ({TITLE_MAX_LEN} for title, {BRAND_NAME_MAX_LEN} for brand, {BULLET_POINT_MAX_LEN} for bullets).
- Count characters carefully. Ensure compliance before outputting.
- Focus ONLY on the specific design, niche, and quote provided
- Every sentence must directly relate to the quote, niche theme, and target audience
- Do not include any content that strays from the specific theme provided
The listing should be specifically for t-shirts, hoodies, or sweaters for the Amazon Merch on Demand program.
The listing MUST be about: {niche} + {quote} + for {target}. Do not generate content about other holidays, quotes, or audiences.
Use these specific keywords in your listing: {keywords}
Respond ONLY with a JSON object in this format:
{{
"title": "The title aiming for {TITLE_MAX_LEN} characters",
"brand_name": "Brand name aiming for 34-{BRAND_NAME_MAX_LEN} characters",
"bullet_point_1": "First bullet point aiming for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters",
"bullet_point_2": "Second bullet point aiming for {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters",
"suggested_keywords": "5 additional keywords separated by commas"
}}
REMINDER: Make sure to count the characters carefully. Aim for Title exactly {TITLE_MAX_LEN} characters. Aim for Bullet points 1 and 2 between {BULLET_POINT_MIN_LEN}-{BULLET_POINT_MAX_LEN} characters.
STRICT ENFORCEMENT: Bullet point 1 and 2 MUST be between {BULLET_POINT_MIN_LEN} and {BULLET_POINT_MAX_LEN} characters. If it's {BULLET_POINT_MAX_LEN+1}+, the result is invalid. Carefully count and ensure compliance.
"""
return combined_prompt
def generate_multiple_variations_prompt(quote, niche, target, keywords):
"""Generate the prompt for multiple variations of title and brand name."""
combined_prompt = f"""You are an Amazon Merch on Demand SEO expert specializing in creating optimized t-shirt and apparel listings.
MY INPUT IS ABOUT: A {niche} t-shirt with the design/quote: "{quote}" for {target}.
YOU MUST ONLY create variations about that EXACT input - no substitutions or different themes allowed.
Generate 3 different variations for the Title and Brand Name based on the provided information.
All variations MUST be about {niche} + "{quote}" + for {target} audience.
The titles MUST include:
- The specific holiday/event: {niche}
- Reference to the quote/design: "{quote}"
- The target audience: {target}
Focus only on t-shirts, sweaters, and hoodies for the Amazon Merch on Demand program.
All titles must aim for exactly {TITLE_MAX_LEN} characters and brand names between 34-{BRAND_NAME_MAX_LEN} characters.
Respond ONLY with a JSON object in this format:
{{
"title_variations": [
"Title variation 1 - aim for {TITLE_MAX_LEN} characters, count carefully",
"Title variation 2 - aim for {TITLE_MAX_LEN} characters, count carefully",
"Title variation 3 - aim for {TITLE_MAX_LEN} characters, count carefully"
],
"brand_name_variations": [
"Brand name variation 1 (aim for 34-{BRAND_NAME_MAX_LEN} characters)",
"Brand name variation 2 (aim for 34-{BRAND_NAME_MAX_LEN} characters)",
"Brand name variation 3 (aim for 34-{BRAND_NAME_MAX_LEN} characters)"
]
}}
REMINDER: Make sure each title aims for EXACTLY {TITLE_MAX_LEN} characters. Count carefully!"""
return combined_prompt
def generate_amazon_listing(api_key, quote, niche, target, keywords):
"""Generate Amazon listing using Gemini API, enforcing character limits."""
# Input validation
if not api_key:
return "Error: Please enter a valid Gemini API key"
if not quote or not niche or not target:
return "Error: Please fill in all required fields (Quote, Holiday/Event, and Target Audience)"
try:
# Configure the Gemini API with the provided key
# Consider using environment variables for production:
# api_key = os.getenv("GEMINI_API_KEY") or api_key_input
genai.configure(api_key=api_key)
# Create model with optimized settings
model = genai.GenerativeModel(
'gemini-1.5-pro', # Or 'gemini-1.5-flash' for potentially faster/cheaper generation
generation_config={
"temperature": 0.3, # Lower temperature for more predictable output
"top_p": 0.8,
"max_output_tokens": 1024, # Maximum tokens the API can *return*
# Note: 'max_output_tokens' doesn't directly control character count precisely
"response_mime_type": "application/json" # Request JSON directly
}
)
# Generate the main listing
prompt = generate_prompt(quote, niche, target, keywords)
try:
# --- Generate Main Listing Content ---
response = model.generate_content(prompt)
# Since we requested JSON, parse it directly. Add error handling.
try:
# Access the text part and load as JSON
response_text = response.text
# Sometimes the API might still wrap it in markdown, try to strip it
json_match = re.search(r'```json\s*({.*?})\s*```', response_text, re.DOTALL | re.IGNORECASE)
if json_match:
json_str = json_match.group(1)
else:
# Fallback if no markdown backticks are found
json_str = response_text.strip()
result = json.loads(json_str)
except (json.JSONDecodeError, AttributeError, IndexError) as json_err:
# Handle cases where response.text is empty, not valid JSON, or API returned unexpected format
print(f"JSON Parsing Error: {json_err}")
print(f"Raw response text: {getattr(response, 'text', 'N/A')}") # Log raw response for debugging
# Check for safety blocks
if response.prompt_feedback.block_reason:
return f"Error: Generation blocked due to: {response.prompt_feedback.block_reason}. Content filters may have been triggered."
return "Error: Could not parse JSON response from Gemini API. The API might have returned an unexpected format or an empty response. Please try again."
# --- ENFORCE CHARACTER LIMITS ---
# Get raw values and immediately truncate if they exceed the MAX limit
title = result.get("title", "")[:TITLE_MAX_LEN]
brand_name = result.get("brand_name", "")[:BRAND_NAME_MAX_LEN]
bullet1 = result.get("bullet_point_1", "")[:BULLET_POINT_MAX_LEN]
bullet2 = result.get("bullet_point_2", "")[:BULLET_POINT_MAX_LEN]
suggested_keywords = result.get("suggested_keywords", "Error generating suggested keywords") # Keywords don't usually need truncation
# --- VALIDATION (using potentially truncated values) ---
# Validate that the output actually matches the input criteria (optional but good)
# Check if *any* part of the target audience is in the title if it's comma-separated
target_parts = [t.strip().lower() for t in target.split(',')]
title_lower = title.lower()
if not (quote.lower() in title_lower or
niche.lower() in title_lower or
any(t_part in title_lower for t_part in target_parts)):
return f"Error: Generated title ('{title}') doesn't seem to strongly match the requested theme: '{quote}', '{niche}', or '{target}'. Please try again or adjust input."
# --- Optional: Validate the *lower* bound for bullet points ---
# Uncomment these lines if you strictly need the bullets to be AT LEAST min_len characters
# Note: This check happens *after* truncation, so if truncation occurred, it might pass this check.
# if len(bullet1) < BULLET_POINT_MIN_LEN:
# return f"Error: Bullet point 1 length ({len(bullet1)}) is less than the required minimum {BULLET_POINT_MIN_LEN} characters after generation/truncation. Please try again."
# if len(bullet2) < BULLET_POINT_MIN_LEN:
# return f"Error: Bullet point 2 length ({len(bullet2)}) is less than the required minimum {BULLET_POINT_MIN_LEN} characters after generation/truncation. Please try again."
# Check for generic content in bullet points
generic_phrases = ["premium quality", "high-quality materials", "soft feel", "long-lasting wear",
"comfortable and stylish"]
bullet1_lower = bullet1.lower()
bullet2_lower = bullet2.lower()
for phrase in generic_phrases:
if phrase in bullet1_lower or phrase in bullet2_lower:
return f"Error: Generated bullet points contain disallowed generic phrase '{phrase}'. Please try again."
# Format main output first - using the enforced length values
main_output = format_output(
title,
brand_name,
bullet1,
bullet2,
suggested_keywords
)
# --- Generate Variations (Optional Second Call) ---
try:
variations_prompt = generate_multiple_variations_prompt(quote, niche, target, keywords)
# Use a separate model instance or reuse if configuration is the same
# Using the same model instance here
response_var = model.generate_content(
variations_prompt,
generation_config={ # Can reuse or adjust config for variations
"temperature": 0.4, # Slightly higher temp for more variety
"top_p": 0.8,
"max_output_tokens": 1024,
"response_mime_type": "application/json"
}
)
# Parse variations JSON
try:
response_var_text = response_var.text
# Try stripping markdown again
json_match_var = re.search(r'```json\s*({.*?})\s*```', response_var_text, re.DOTALL | re.IGNORECASE)
if json_match_var:
json_str_var = json_match_var.group(1)
else:
json_str_var = response_var_text.strip()
variations = json.loads(json_str_var)
# Format variations output, enforcing limits here too
variations_output = "\n\nADDITIONAL VARIATIONS:\n\n"
variations_output += "Title Variations:\n"
for i, var in enumerate(variations.get("title_variations", []), 1):
truncated_var = var[:TITLE_MAX_LEN] # Enforce limit
variations_output += f"{i}. {truncated_var} ({count_characters(truncated_var)}/{TITLE_MAX_LEN} characters)\n"
variations_output += "\nBrand Name Variations:\n"
for i, var in enumerate(variations.get("brand_name_variations", []), 1):
truncated_var = var[:BRAND_NAME_MAX_LEN] # Enforce limit
variations_output += f"{i}. {truncated_var} ({count_characters(truncated_var)}/{BRAND_NAME_MAX_LEN} characters)\n"
# Combine main output with variations
return main_output + variations_output
except (json.JSONDecodeError, AttributeError, IndexError) as json_var_err:
print(f"JSON Parsing Error (Variations): {json_var_err}")
print(f"Raw variations response text: {getattr(response_var, 'text', 'N/A')}")
# Check for safety blocks on variations
if response_var.prompt_feedback.block_reason:
return main_output + f"\n\n(Could not generate variations: Blocked - {response_var.prompt_feedback.block_reason})"
return main_output + "\n\n(Could not parse variations response)"
except genai.types.generation_types.BlockedPromptException as var_block_error:
return main_output + f"\n\n(Variations prompt blocked: {var_block_error})"
except Exception as var_error:
# Catch other errors during variation generation
print(f"Error generating variations: {var_error}") # Log the error
return main_output + f"\n\n(Could not generate variations due to an error)"
except genai.types.generation_types.BlockedPromptException as block_error:
# Catch blocked prompts specifically for better feedback
return f"Error: The main prompt was blocked by Gemini API safety filters: {block_error}. Please modify your input and try again."
except Exception as e:
# Catch other potential errors during the main API call
print(f"Error during main listing generation: {e}") # Log the error
# You might want to check response.candidates[0].finish_reason if available
# finish_reason = getattr(response.candidates[0], 'finish_reason', 'UNKNOWN')
# safety_ratings = getattr(response.candidates[0].safety_ratings, 'name', 'UNKNOWN')
return f"Error generating main listing. Please check logs or try again."
except Exception as e:
# Catch configuration errors or other unexpected issues
print(f"General Error: {e}") # Log the error
return f"An unexpected error occurred: {str(e)}"
# --- Create the Gradio Interface ---
def create_interface():
with gr.Blocks(title="Amazon Merch on Demand Listing Generator", theme=gr.themes.Soft()) as app:
gr.Markdown("# Amazon Merch on Demand Listing Generator")
gr.Markdown("Generate SEO-optimized t-shirt and apparel listings for Amazon Merch on Demand using Gemini AI. Character limits are enforced.")
with gr.Row():
with gr.Column(scale=1):
# Recommend using environment variable for API key in real deployments
api_key = gr.Textbox(
label="Gemini API Key",
placeholder="Enter your Gemini API key (or leave blank if set as environment variable)",
type="password",
# value=os.getenv("GEMINI_API_KEY", "") # Pre-fill if env var exists
)
quote = gr.Textbox(label="Quote/Design/Idea", placeholder="e.g., Lucky To Be A Teacher", value="Rainbow with a quote \"Lucky To Be A Teacher\"")
niche = gr.Textbox(label="Niche/Holiday/Event", placeholder="e.g., St Patrick's Day", value="St Patricks Day")
target = gr.Textbox(label="Target Audience", placeholder="e.g., Teacher, Mom, Dad", value="Teacher, Teacher Mom")
keywords = gr.Textbox(
label="Target Keywords (comma-separated)",
placeholder="Enter keywords relevant to your design",
lines=5,
value="lucky, teacher, rainbow, st, patricks, day, t-shirt, patrick's, outfit, design, leopard, cheetah, print, shamrock, clover, perfect, men, women, teachers, celebrate, saint, patrick, special, unique, makes, great, gifts, idea, substitute, love, irish, culture, pattys, holiday, teach, shamrocks, cute, design, awesome, show, students"
)
submit_btn = gr.Button("Generate Amazon Listing", variant="primary")
with gr.Column(scale=2):
status = gr.Textbox(label="Status", value="Ready", interactive=False, lines=1)
output = gr.Textbox(label="Generated Amazon Listing", lines=25, interactive=True) # Make output selectable
def on_submit(api_key_input, quote, niche, target, keywords):
# Use environment variable if input is blank (optional but good practice)
# final_api_key = os.getenv("GEMINI_API_KEY") or api_key_input
final_api_key = api_key_input # Keep it simple for now
if not final_api_key:
# Update status first before returning error message
yield "Error: Gemini API Key is required.", ""
return # Stop execution
# Update status to indicate processing
yield "Generating listing... This may take a moment.", "Processing..."
# Generate the listing
result = generate_amazon_listing(final_api_key, quote, niche, target, keywords)
# Update status and output based on the result
if "Error:" in result:
yield f"Finished with Error.", result
else:
yield "Listing generated successfully!", result
submit_btn.click(
fn=on_submit,
inputs=[api_key, quote, niche, target, keywords],
outputs=[status, output],
show_progress="full" # Show more detailed progress
)
gr.Markdown("## Example Input")
gr.Markdown('''
Use the pre-filled example above or enter your own details:
* **Quote/Design:** The core text or visual idea on the shirt.
* **Niche/Holiday:** The specific event, theme, or category (e.g., Halloween, Fishing, Dog Lover).
* **Target Audience:** Who is this shirt for? (e.g., Nurse, Engineer, Grandpa).
* **Keywords:** Relevant terms customers might search for.
''')
gr.Markdown("""
## Notes & Troubleshooting
* **Character Limits:** The app attempts to generate text close to the limits requested in the prompt, but **strictly enforces maximum lengths** by truncating if necessary (Title: 60, Brand: 50, Bullets: 256). The displayed count reflects the final length.
* **API Key:** For security, consider setting your Gemini API Key as an environment variable (`GEMINI_API_KEY`) instead of pasting it directly, especially if deploying publicly.
* **Errors:** If you see errors related to 'BlockedPromptException' or 'Safety', your input might have triggered content filters. Try rephrasing. Other errors might relate to API connectivity or quota.
* **Variations:** The app generates the main listing first, then attempts to generate title/brand variations. Variation generation might fail separately without affecting the main listing.
* **JSON Request:** The app now explicitly requests JSON output from the API (`response_mime_type`).
""")
return app
# --- Create and Launch the Gradio App ---
app = create_interface()
# Launch the app (remove debug=True for production)
if __name__ == "__main__":
# Set share=True to get a public link (useful for temporary sharing)
app.launch(debug=True)
# app.launch() # For deployment (e.g., Hugging Face Spaces)