Describer-Pro / app.py
mroccuper's picture
Update app.py
19338e6 verified
raw
history blame
7.05 kB
import os
import gradio as gr
import google.generativeai as genai
from PIL import Image, ImageEnhance, ImageFilter
import io
import base64
import json
import time
import traceback
try:
import pyperclip
except ImportError:
pyperclip = None
# --- Environment Configuration ---
GEMINI_KEY = os.environ.get("GEMINI_KEY", "")
DEFAULT_PORT = int(os.environ.get("PORT", 7860))
# --- Style Template Optimization ---
BASE_TEMPLATE = """Describe this design as a concise Flux 1.1 Pro prompt focusing on:
- Key visual elements
- Technical specifications
- Style consistency
- Functional requirements"""
STYLE_INSTRUCTIONS = {
"General": BASE_TEMPLATE,
"Realistic": f"{BASE_TEMPLATE}\nPHOTOREALISTIC RULES: Use photography terms, texture details, accurate lighting",
"Kawaii": f"{BASE_TEMPLATE}\nKAWAII RULES: Rounded shapes, pastel colors, cute expressions",
"Vector": f"{BASE_TEMPLATE}\nVECTOR RULES: Clean lines, geometric shapes, B&W gradients",
"Silhouette": f"{BASE_TEMPLATE}\nSILHOUETTE RULES: High contrast, minimal details, strong outlines"
}
# --- Flux Configuration ---
FLUX_SPECS = {
"aspect_ratios": ["1:1", "16:9", "4:3", "9:16"],
"formats": ["SVG", "PNG", "PDF"],
"color_modes": ["B&W", "CMYK", "RGB"],
"dpi_options": [72, 150, 300, 600]
}
# --- Quality Control System ---
class QualityValidator:
VALIDATION_TEMPLATE = """Analyze this Flux prompt:
1. Score style adherence (1-5)
2. List technical issues
3. Suggest improvements
Respond ONLY as JSON: {"score": x/10, "issues": [], "suggestions": []}"""
@classmethod
def validate(cls, prompt, model):
try:
response = model.generate_content([cls.VALIDATION_TEMPLATE, prompt])
return json.loads(response.text)
except:
return {"score": 0, "issues": ["Validation failed"], "suggestions": []}
# --- Image Processing Pipeline ---
def preprocess_image(img):
"""Convert and enhance uploaded images"""
try:
if isinstance(img, str): # Handle file paths
img = Image.open(img)
img = img.convert("RGB")
img = ImageEnhance.Contrast(img).enhance(1.2)
img = img.filter(ImageFilter.SHARPEN)
return img
except Exception as e:
raise ValueError(f"Image processing error: {str(e)}")
# --- Core Generation Engine ---
def generate_prompt(image, api_key, style, creativity, neg_prompt, aspect, color_mode, dpi):
try:
# Validate inputs
if not image:
raise ValueError("Please upload an image")
api_key = api_key or GEMINI_KEY
if not api_key:
raise ValueError("API key required - set in env (GEMINI_KEY) or input field")
# Initialize model
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-pro")
# Process image
img = preprocess_image(image)
img_bytes = io.BytesIO()
img.save(img_bytes, format="PNG")
img_b64 = base64.b64encode(img_bytes.getvalue()).decode()
# Build instruction
instruction = f"{STYLE_INSTRUCTIONS[style]}\nAVOID: {neg_prompt}\n"
instruction += f"ASPECT: {aspect}, COLORS: {color_mode}, DPI: {dpi}\n"
# Generate prompt
response = model.generate_content(
contents=[instruction, {"mime_type": "image/png", "data": img_b64}],
generation_config={"temperature": creativity}
)
raw_prompt = response.text
# Quality validation
validation = QualityValidator.validate(raw_prompt, model)
if validation.get("score", 0) < 7:
response = model.generate_content(f"Improve this prompt: {raw_prompt}\nIssues: {validation['issues']}")
raw_prompt = response.text
# Token tracking
input_tokens = len(img_b64) // 4 # Approximate base64 token count
output_tokens = len(raw_prompt.split())
return {
"prompt": raw_prompt,
"validation": validation,
"stats": {"input": input_tokens, "output": output_tokens}
}
except Exception as e:
traceback.print_exc()
return {"error": str(e)}
# --- UI Components ---
def create_advanced_controls():
with gr.Accordion("โš™๏ธ Advanced Settings", open=False):
with gr.Row():
creativity = gr.Slider(0.0, 1.0, 0.7, label="Creativity Level")
neg_prompt = gr.Textbox(label="๐Ÿšซ Negative Prompts", placeholder="What to avoid")
with gr.Row():
aspect = gr.Dropdown(FLUX_SPECS["aspect_ratios"], label="Aspect Ratio")
color_mode = gr.Dropdown(FLUX_SPECS["color_modes"], label="Color Mode")
dpi = gr.Dropdown(FLUX_SPECS["dpi_options"], label="Output DPI")
return [creativity, neg_prompt, aspect, color_mode, dpi]
# --- Main Interface ---
def build_interface():
with gr.Blocks(title="Flux Pro Generator", theme=gr.themes.Soft()) as app:
# Security Section
api_key = gr.Textbox(
label="๐Ÿ”‘ Gemini API Key",
value=GEMINI_KEY,
type="password",
info="Set GEMINI_KEY environment variable for production"
)
# Main Workflow
with gr.Row(variant="panel"):
with gr.Column(scale=1):
img_input = gr.Image(
label="๐Ÿ–ผ๏ธ Upload Design",
type="pil",
sources=["upload"],
interactive=True
)
style = gr.Dropdown(
list(STYLE_INSTRUCTIONS.keys()),
value="General",
label="๐ŸŽจ Target Style"
)
adv_controls = create_advanced_controls()
gen_btn = gr.Button("โœจ Generate Prompt", variant="primary")
with gr.Column(scale=2):
prompt_output = gr.Textbox(
label="๐Ÿ“ Optimized Prompt",
lines=8,
interactive=False
)
with gr.Row():
copy_btn = gr.Button("๐Ÿ“‹ Copy")
history_btn = gr.Button("๐Ÿ•’ History")
quality_report = gr.JSON(
label="๐Ÿ” Quality Report",
visible=True
)
token_stats = gr.JSON(
label="๐Ÿงฎ Token Usage",
visible=True
)
# History System
history = gr.State([])
# Event Handling
gen_btn.click(
lambda *args: generate_prompt(*args),
inputs=[img_input, api_key, style] + adv_controls,
outputs=[prompt_output, quality_report, token_stats]
)
copy_btn.click(
lambda x: pyperclip.copy(x) if pyperclip else None,
inputs=prompt_output,
outputs=None
)
return app
# --- Production Launch ---
if __name__ == "__main__":
app = build_interface()
app.launch()