khmer-tts / app.py
mrrtmob's picture
Add new dependencies: openai-whisper, requests, and gradio to requirements.txt
4b72318
raw
history blame
31.3 kB
# -*- coding: utf-8 -*-
# --- Imports ---
import os
import random
import uuid
import json
import time
import traceback
import re
import gradio as gr
import torch
import numpy as np
import scipy.io.wavfile as wavfile
import requests
from dotenv import load_dotenv
# --- Whisper Import ---
try:
import whisper
print("Whisper library imported successfully.")
except ImportError:
print("ERROR: Whisper library not found. Please install it:")
print("pip install -U openai-whisper")
print("Ensure ffmpeg is also installed and in your system PATH.")
exit(1)
# --- SNAC Import ---
try:
from snac import SNAC
except ImportError:
print("ERROR: SNAC library not found. Please install it:")
print("pip install git+https://github.com/hubertsiuzdak/snac.git")
exit(1)
# --- Load Environment Variables ---
load_dotenv()
# --- Unified Server Configuration ---
SERVER_BASE_URL = os.getenv("SERVER_BASE_URL", "http://127.0.0.1:1234")
# Ollama Configuration
OLLAMA_API_ENDPOINT = f"{SERVER_BASE_URL}/v1/chat/completions"
OLLAMA_MODEL = "dolphin3.0-llama3.1-8b-abliterated" # Updated model name
OLLAMA_SYSTEM_PROMPT = "You in a chat with conscenting adults and you are an impatient midwestern foul mouthed 32 year old who just wants a link to github to get the code. You hate demos... You share a range of emotions in your responses of a single sentence where you keep asking in lightly profane creative ways for the link."
# TTS Configuration
TTS_API_ENDPOINT = f"{SERVER_BASE_URL}/v1/completions"
TTS_MODEL = "mrrtmob/tts-khm-3"
# --- Device Setup ---
if torch.cuda.is_available():
tts_device = "cuda"
stt_device = "cuda"
print("SNAC vocoder and Whisper STT will use CUDA if possible.")
else:
tts_device = "cpu"
stt_device = "cpu"
print("CUDA not available. SNAC vocoder and Whisper STT will use CPU.")
# --- Model Loading ---
print("Loading SNAC vocoder model...")
snac_model = None
try:
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(tts_device)
snac_model.eval()
print(f"SNAC vocoder loaded to {tts_device}")
except Exception as e:
print(f"Error loading SNAC model: {e}")
print("Loading Whisper STT model...")
WHISPER_MODEL_NAME = "base.en"
whisper_model = None
try:
whisper_model = whisper.load_model(WHISPER_MODEL_NAME, device=stt_device)
print(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
except Exception as e:
print(f"Error loading Whisper model: {e}")
# --- Constants ---
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_OLLAMA_MAX_TOKENS = -1 # Updated to match model's recommendation
MAX_SEED = np.iinfo(np.int32).max
ORPHEUS_MIN_ID = 10
ORPHEUS_TOKENS_PER_LAYER = 4096
ORPHEUS_N_LAYERS = 7
ORPHEUS_MAX_ID = ORPHEUS_MIN_ID + (ORPHEUS_N_LAYERS * ORPHEUS_TOKENS_PER_LAYER)
DEFAULT_OLLAMA_TEMP = 0.7
DEFAULT_OLLAMA_TOP_P = 0.9
DEFAULT_OLLAMA_TOP_K = 40
DEFAULT_OLLAMA_REP_PENALTY = 1.1
DEFAULT_TTS_TEMP = 0.4
DEFAULT_TTS_TOP_P = 0.9
DEFAULT_TTS_TOP_K = 40
DEFAULT_TTS_REP_PENALTY = 1.1
CONTEXT_TURN_LIMIT = 3
# --- Utility Functions ---
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def clean_chat_history(limited_chat_history):
cleaned_ollama_format = []
if not limited_chat_history:
return []
for user_msg_display, bot_msg_display in limited_chat_history:
user_text = None
if isinstance(user_msg_display, str):
if user_msg_display.startswith("🎀 (Audio Input): "):
user_text = user_msg_display.split("🎀 (Audio Input): ", 1)[1]
elif user_msg_display.startswith(("@tara-tts ", "@tara-llm ")):
user_text = user_msg_display.split(" ", 1)[1]
else:
user_text = user_msg_display
elif isinstance(user_msg_display, tuple):
if len(user_msg_display) > 1 and isinstance(user_msg_display[1], str):
user_text = user_msg_display[1].replace("🎀: ", "")
elif isinstance(user_msg_display[0], str) and not user_msg_display[0].endswith((".wav", ".mp3")):
user_text = user_msg_display[0]
bot_text = None
if isinstance(bot_msg_display, tuple):
if len(bot_msg_display) > 1 and isinstance(bot_msg_display[1], str):
bot_text = bot_msg_display[1]
elif isinstance(bot_msg_display, str):
if not bot_msg_display.startswith(("[Error", "(Error", "Sorry,", "(No input", "Processing", "(TTS failed")):
bot_text = bot_msg_display
if user_text and user_text.strip():
cleaned_ollama_format.append({"role": "user", "content": user_text})
if bot_text and bot_text.strip():
cleaned_ollama_format.append({"role": "assistant", "content": bot_text})
return cleaned_ollama_format
# --- TTS Pipeline Functions ---
def parse_gguf_codes(response_text):
absolute_ids = []
matches = re.findall(r"<custom_token_(\d+)>", response_text)
if not matches:
return []
for number_str in matches:
try:
token_id = int(number_str)
if ORPHEUS_MIN_ID <= token_id < ORPHEUS_MAX_ID:
absolute_ids.append(token_id)
except ValueError:
continue
print(f" - Parsed {len(absolute_ids)} valid audio token IDs using regex.")
return absolute_ids
def redistribute_codes(absolute_code_list, target_snac_model):
if not absolute_code_list or target_snac_model is None:
return None
snac_device = next(target_snac_model.parameters()).device
layer_1, layer_2, layer_3 = [], [], []
num_tokens = len(absolute_code_list)
num_groups = num_tokens // ORPHEUS_N_LAYERS
if num_groups == 0:
return None
print(f" - Processing {num_groups} groups of {ORPHEUS_N_LAYERS} codes for SNAC...")
for i in range(num_groups):
base_idx = i * ORPHEUS_N_LAYERS
if base_idx + ORPHEUS_N_LAYERS > num_tokens:
break
group_codes = absolute_code_list[base_idx:base_idx + ORPHEUS_N_LAYERS]
processed_group = [None] * ORPHEUS_N_LAYERS
valid_group = True
for j, token_id in enumerate(group_codes):
if not (ORPHEUS_MIN_ID <= token_id < ORPHEUS_MAX_ID):
valid_group = False
break
layer_index = (token_id - ORPHEUS_MIN_ID) // ORPHEUS_TOKENS_PER_LAYER
code_index = (token_id - ORPHEUS_MIN_ID) % ORPHEUS_TOKENS_PER_LAYER
if layer_index != j:
valid_group = False
break
processed_group[j] = code_index
if not valid_group:
continue
try:
layer_1.append(processed_group[0])
layer_2.append(processed_group[1])
layer_3.append(processed_group[2])
layer_3.append(processed_group[3])
layer_2.append(processed_group[4])
layer_3.append(processed_group[5])
layer_3.append(processed_group[6])
except (IndexError, TypeError):
continue
try:
if not layer_1 or not layer_2 or not layer_3:
return None
print(f" - Final SNAC layer sizes: L1={len(layer_1)}, L2={len(layer_2)}, L3={len(layer_3)}")
codes = [
torch.tensor(layer_1, device=snac_device, dtype=torch.long).unsqueeze(0),
torch.tensor(layer_2, device=snac_device, dtype=torch.long).unsqueeze(0),
torch.tensor(layer_3, device=snac_device, dtype=torch.long).unsqueeze(0)
]
with torch.no_grad():
audio_hat = target_snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
except Exception as e:
print(f"Error during tensor creation or SNAC decoding: {e}")
return None
def generate_speech_gguf(text, voice, tts_temperature, tts_top_p, tts_repetition_penalty, max_new_tokens_audio):
if not text.strip() or snac_model is None:
return None
print(f"Generating speech via TTS server for: '{text[:50]}...'")
start_time = time.time()
payload = {
"model": TTS_MODEL,
"prompt": f"<|audio|>{voice}: {text}<|eot_id|>",
"temperature": tts_temperature,
"top_p": tts_top_p,
"repeat_penalty": tts_repetition_penalty,
"max_tokens": max_new_tokens_audio,
"stop": ["<|eot_id|>", "<|audio|>"],
"stream": False
}
print(f" - Sending payload to {TTS_API_ENDPOINT} (Model: {TTS_MODEL})")
try:
headers = {"Content-Type": "application/json"}
response = requests.post(
TTS_API_ENDPOINT,
json=payload,
headers=headers,
timeout=180
)
response.raise_for_status()
response_json = response.json()
print(f" - Raw TTS response: {json.dumps(response_json, indent=2)[:200]}...")
if "choices" in response_json and len(response_json["choices"]) > 0:
raw_generated_text = response_json["choices"][0].get("text", "").strip()
if not raw_generated_text:
print("Error: Empty text in TTS response")
return None
req_time = time.time()
print(f" - TTS server request took {req_time - start_time:.2f}s")
absolute_id_list = parse_gguf_codes(raw_generated_text)
if not absolute_id_list:
print("Error: No valid audio codes parsed. Raw text:", raw_generated_text[:200])
return None
audio_samples = redistribute_codes(absolute_id_list, snac_model)
if audio_samples is None:
print("Error: Failed to generate audio samples from tokens")
return None
snac_time = time.time()
print(f" - Generated audio samples via SNAC, shape: {audio_samples.shape}")
print(f" - Total TTS generation time: {snac_time - start_time:.2f}s")
return (24000, audio_samples)
else:
print(f"Error: Unexpected TTS response format: {response_json}")
return None
except requests.exceptions.RequestException as e:
print(f"Error during request to TTS server: {e}")
return None
except Exception as e:
print(f"Error during TTS generation pipeline: {e}")
traceback.print_exc()
return None
# --- Ollama Communication Helper ---
def call_ollama_non_streaming(ollama_payload, generation_params):
final_response = "[Error: Default response]"
try:
payload = {
"model": OLLAMA_MODEL,
"messages": ollama_payload["messages"],
"temperature": generation_params.get('ollama_temperature', DEFAULT_OLLAMA_TEMP),
"top_p": generation_params.get('ollama_top_p', DEFAULT_OLLAMA_TOP_P),
"max_tokens": generation_params.get('ollama_max_new_tokens', DEFAULT_OLLAMA_MAX_TOKENS),
"repeat_penalty": generation_params.get('ollama_repetition_penalty', DEFAULT_OLLAMA_REP_PENALTY),
"stream": False
}
print(f" - Sending to {OLLAMA_API_ENDPOINT} with model {OLLAMA_MODEL}")
headers = {"Content-Type": "application/json"}
start_time = time.time()
response = requests.post(
OLLAMA_API_ENDPOINT,
json=payload,
headers=headers,
timeout=180
)
response.raise_for_status()
response_json = response.json()
end_time = time.time()
print(f" - LLM request took {end_time - start_time:.2f}s")
if "choices" in response_json and len(response_json["choices"]) > 0:
choice = response_json["choices"][0]
if "message" in choice:
final_response = choice["message"]["content"].strip()
elif "text" in choice:
final_response = choice["text"].strip()
else:
final_response = "[Error: Unexpected response format]"
else:
final_response = f"[Error: {response_json.get('error', 'Unknown error')}]"
except requests.exceptions.RequestException as e:
final_response = f"[Error connecting to LLM: {e}]"
except Exception as e:
final_response = f"[Unexpected Error: {e}]"
traceback.print_exc()
print(f" - LLM response: '{final_response[:100]}...'")
return final_response
# --- Main Gradio Backend Function ---
def process_input_blocks(
text_input: str, audio_input_path: str,
auto_prefix_tts_checkbox: bool,
auto_prefix_llm_checkbox: bool,
plain_llm_checkbox: bool,
ollama_max_new_tokens: int, ollama_temperature: float, ollama_top_p: float,
ollama_top_k: int, ollama_repetition_penalty: float,
tts_temperature: float, tts_top_p: float, tts_repetition_penalty: float,
chat_history: list
):
global whisper_model, snac_model
original_user_input_text = ""
user_display_input = None
text_to_process = ""
transcription_source = "text"
bot_response = ""
bot_audio_tuple = None
audio_filepath_to_clean = None
is_purely_text_input = False
prefix_to_add = None
force_plain_llm = False
# Handle Audio Input
if audio_input_path and whisper_model:
if os.path.isfile(audio_input_path):
audio_filepath_to_clean = audio_input_path
transcription_source = "voice"
print(f"Processing audio input: {audio_input_path}")
try:
stt_start_time = time.time()
result = whisper_model.transcribe(audio_input_path, fp16=(stt_device == 'cuda'))
original_user_input_text = result["text"].strip()
stt_end_time = time.time()
print(f" - Whisper transcription: '{original_user_input_text}' (took {stt_end_time - stt_start_time:.2f}s)")
user_display_input = f"🎀 (Audio Input): {original_user_input_text}"
text_to_process = original_user_input_text
# Check if transcription is already a command
known_prefixes = ["@tara-tts", "@jess-tts", "@leo-tts", "@leah-tts", "@dan-tts", "@mia-tts", "@zac-tts", "@zoe-tts",
"@tara-llm", "@jess-llm", "@leo-llm", "@leah-llm", "@dan-llm", "@mia-llm", "@zac-llm", "@zoe-llm"]
is_already_command = any(original_user_input_text.lower().startswith(p) for p in known_prefixes)
if not is_already_command:
if plain_llm_checkbox:
prefix_to_add = None
force_plain_llm = True
print(f" - Plain LLM checked. Processing audio as text input for LLM.")
elif auto_prefix_tts_checkbox:
prefix_to_add = "@tara-tts"
print(f" - Auto-prefix TTS checked. Applying to audio.")
elif auto_prefix_llm_checkbox:
prefix_to_add = "@tara-llm"
print(f" - Auto-prefix LLM checked. Applying to audio.")
else:
print(f" - No default prefix checkbox checked for audio. Processing as text for LLM.")
if prefix_to_add:
text_to_process = f"{prefix_to_add} {original_user_input_text}"
else:
print(f" - Transcribed audio is already a command '{original_user_input_text[:20]}...'.")
text_to_process = original_user_input_text
except Exception as e:
print(f"Error during Whisper transcription: {e}")
traceback.print_exc()
error_msg = f"[Error during local transcription: {e}]"
chat_history.append((f"🎀 (Audio Input Error: {audio_input_path})", error_msg))
if audio_filepath_to_clean and os.path.exists(audio_filepath_to_clean):
try:
os.remove(audio_filepath_to_clean)
except Exception as e_clean:
print(f"Warning: Could not clean up STT temp file {audio_filepath_to_clean}: {e_clean}")
return chat_history, None, None
else:
print(f"Received invalid audio path: {audio_input_path}, falling back to text.")
# Handle Text Input
if not text_to_process and text_input:
original_user_input_text = text_input.strip()
user_display_input = original_user_input_text
print(f"Processing text input: '{original_user_input_text}'")
transcription_source = "text"
text_to_process = original_user_input_text
known_prefixes = ["@tara-tts", "@jess-tts", "@leo-tts", "@leah-tts", "@dan-tts", "@mia-tts", "@zac-tts", "@zoe-tts",
"@tara-llm", "@jess-llm", "@leo-llm", "@leah-llm", "@dan-llm", "@mia-llm", "@zac-llm", "@zoe-llm"]
is_already_command = any(original_user_input_text.lower().startswith(p) for p in known_prefixes)
if not is_already_command:
if plain_llm_checkbox:
prefix_to_add = None
force_plain_llm = True
print(f" - Plain LLM checked. Processing text input for LLM.")
elif auto_prefix_tts_checkbox:
prefix_to_add = "@tara-tts"
print(f" - Auto-prefix TTS checked. Applying to text.")
elif auto_prefix_llm_checkbox:
prefix_to_add = "@tara-llm"
print(f" - Auto-prefix LLM checked. Applying to text.")
else:
print(f" - No default prefix checkbox enabled for text input.")
else:
print(f" - User provided command in text '{original_user_input_text[:20]}...', not auto-prepending.")
if prefix_to_add:
text_to_process = f"{prefix_to_add} {original_user_input_text}"
# Cleanup audio file
if audio_filepath_to_clean and os.path.exists(audio_filepath_to_clean):
try:
os.remove(audio_filepath_to_clean)
print(f" - Cleaned up temporary STT audio file: {audio_filepath_to_clean}")
except Exception as e_clean:
print(f"Warning: Could not clean up temp STT audio file {audio_filepath_to_clean}: {e_clean}")
if not text_to_process:
print("No valid text or audio input to process.")
return chat_history, None, None
chat_history.append((user_display_input, None))
# Process Input Text
lower_text = text_to_process.lower()
print(f" - Routing query ({transcription_source}): '{text_to_process[:100]}...'")
all_voices = ["tara", "jess", "leo", "leah", "dan", "mia", "zac", "zoe"]
tts_tags = {f"@{voice}-tts": voice for voice in all_voices}
llm_tags = {f"@{voice}-llm": voice for voice in all_voices}
final_bot_message = None
try:
matched_tts = False
matched_llm_tts = False
# Check Branches
if not force_plain_llm:
# Branch 1: Direct TTS
for tag, voice in tts_tags.items():
if lower_text.startswith(tag):
matched_tts = True
text_to_speak = text_to_process[len(tag):].strip()
print(f" - Direct TTS request for voice '{voice}': '{text_to_speak[:50]}...'")
if snac_model is None:
raise ValueError("SNAC vocoder not loaded.")
audio_output = generate_speech_gguf(
text_to_speak, voice,
tts_temperature, tts_top_p, tts_repetition_penalty,
MAX_MAX_NEW_TOKENS
)
if audio_output:
sample_rate, audio_data = audio_output
if audio_data.dtype != np.int16:
if np.issubdtype(audio_data.dtype, np.floating):
max_val = np.max(np.abs(audio_data))
audio_data = np.int16(audio_data/max_val*32767) if max_val > 1e-6 else np.zeros_like(audio_data, dtype=np.int16)
else:
audio_data = audio_data.astype(np.int16)
temp_dir = "temp_audio_files"
os.makedirs(temp_dir, exist_ok=True)
temp_audio_path = os.path.join(temp_dir, f"temp_audio_{uuid.uuid4().hex}.wav")
wavfile.write(temp_audio_path, sample_rate, audio_data)
print(f" - Saved TTS audio: {temp_audio_path}")
final_bot_message = (temp_audio_path, None)
else:
final_bot_message = f"Sorry, couldn't generate speech for '{text_to_speak[:50]}...'."
break
# Branch 2: LLM + TTS
if not matched_tts:
for tag, voice in llm_tags.items():
if lower_text.startswith(tag):
matched_llm_tts = True
prompt_for_llm = text_to_process[len(tag):].strip()
print(f" - LLM+TTS request for voice '{voice}': '{prompt_for_llm[:75]}...'")
if snac_model is None:
raise ValueError("SNAC vocoder not loaded.")
history_before_current = chat_history[:-1]
limited_history_turns = history_before_current[-CONTEXT_TURN_LIMIT:]
cleaned_hist_for_llm = clean_chat_history(limited_history_turns)
messages = [
{"role": "system", "content": OLLAMA_SYSTEM_PROMPT}
] + cleaned_hist_for_llm + [
{"role": "user", "content": prompt_for_llm}
]
llm_params = {
'ollama_temperature': ollama_temperature,
'ollama_top_p': ollama_top_p,
'ollama_top_k': ollama_top_k,
'ollama_max_new_tokens': ollama_max_new_tokens,
'ollama_repetition_penalty': ollama_repetition_penalty
}
llm_response_text = call_ollama_non_streaming(
{"messages": messages},
llm_params
)
if llm_response_text and not llm_response_text.startswith("[Error"):
audio_output = generate_speech_gguf(
llm_response_text, voice,
tts_temperature, tts_top_p, tts_repetition_penalty,
MAX_MAX_NEW_TOKENS
)
if audio_output:
sample_rate, audio_data = audio_output
if audio_data.dtype != np.int16:
if np.issubdtype(audio_data.dtype, np.floating):
max_val = np.max(np.abs(audio_data))
audio_data = np.int16(audio_data/max_val*32767) if max_val > 1e-6 else np.zeros_like(audio_data, dtype=np.int16)
else:
audio_data = audio_data.astype(np.int16)
temp_dir = "temp_audio_files"
os.makedirs(temp_dir, exist_ok=True)
temp_audio_path = os.path.join(temp_dir, f"temp_audio_{uuid.uuid4().hex}.wav")
wavfile.write(temp_audio_path, sample_rate, audio_data)
print(f" - Saved LLM+TTS audio: {temp_audio_path}")
final_bot_message = (temp_audio_path, llm_response_text)
else:
print("Warning: TTS generation failed...")
final_bot_message = f"{llm_response_text}\n\n(TTS failed...)"
else:
final_bot_message = llm_response_text
break
# Branch 3: Plain LLM
if force_plain_llm or (not matched_tts and not matched_llm_tts):
if force_plain_llm:
print(f" - Plain LLM chat mode forced by checkbox...")
else:
print(f" - Default text chat (no command prefix detected/added)...")
history_before_current = chat_history[:-1]
limited_history_turns = history_before_current[-CONTEXT_TURN_LIMIT:]
cleaned_hist_for_llm = clean_chat_history(limited_history_turns)
messages = [
{"role": "system", "content": OLLAMA_SYSTEM_PROMPT}
] + cleaned_hist_for_llm + [
{"role": "user", "content": original_user_input_text}
]
llm_params = {
'ollama_temperature': ollama_temperature,
'ollama_top_p': ollama_top_p,
'ollama_top_k': ollama_top_k,
'ollama_max_new_tokens': ollama_max_new_tokens,
'ollama_repetition_penalty': ollama_repetition_penalty
}
final_bot_message = call_ollama_non_streaming(
{"messages": messages},
llm_params
)
except Exception as e:
print(f"Error during processing: {e}")
traceback.print_exc()
final_bot_message = f"[An unexpected error occurred: {e}]"
chat_history[-1] = (user_display_input, final_bot_message)
return chat_history, None, None
# --- Gradio Interface ---
def update_prefix_checkboxes(selected_checkbox_label):
if selected_checkbox_label == "tts":
return gr.update(value=True), gr.update(value=False), gr.update(value=False)
elif selected_checkbox_label == "llm":
return gr.update(value=False), gr.update(value=True), gr.update(value=False)
elif selected_checkbox_label == "plain":
return gr.update(value=False), gr.update(value=False), gr.update(value=True)
else:
return gr.update(), gr.update(), gr.update()
print("Setting up Gradio Interface with gr.Blocks...")
theme_to_use = None
with gr.Blocks(theme=theme_to_use) as demo:
gr.Markdown(f"# Orpheus Edge 🎀 ({OLLAMA_MODEL}) Chat & TTS")
chatbot = gr.Chatbot(label="Chat History", height=500)
with gr.Row():
with gr.Column(scale=3):
text_input_box = gr.Textbox(label="Type your message or use microphone", lines=2)
with gr.Column(scale=1):
audio_input_mic = gr.Audio(label="Record Audio Input", type="filepath")
with gr.Row():
auto_prefix_tts_checkbox = gr.Checkbox(label="Default to TTS (@tara-tts)", value=True, elem_id="cb_tts")
auto_prefix_llm_checkbox = gr.Checkbox(label="Default to LLM+TTS (@tara-llm)", value=False, elem_id="cb_llm")
plain_llm_checkbox = gr.Checkbox(label="Plain LLM Chat (Text Out)", value=False, elem_id="cb_plain")
with gr.Row():
submit_button = gr.Button("Send / Submit")
clear_button = gr.ClearButton([text_input_box, audio_input_mic, chatbot])
with gr.Accordion("Generation Parameters", open=False):
gr.Markdown("### LLM Parameters")
ollama_max_new_tokens_slider = gr.Slider(label="Max New Tokens", minimum=32, maximum=4096, step=32, value=DEFAULT_OLLAMA_MAX_TOKENS)
ollama_temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=2.0, step=0.05, value=DEFAULT_OLLAMA_TEMP)
ollama_top_p_slider = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=DEFAULT_OLLAMA_TOP_P)
ollama_top_k_slider = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=DEFAULT_OLLAMA_TOP_K)
ollama_repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=DEFAULT_OLLAMA_REP_PENALTY)
gr.Markdown("---")
gr.Markdown("### TTS Parameters")
tts_temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=2.0, step=0.05, value=DEFAULT_TTS_TEMP)
tts_top_p_slider = gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=DEFAULT_TTS_TOP_P)
tts_repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=DEFAULT_TTS_REP_PENALTY)
param_inputs = [
ollama_max_new_tokens_slider, ollama_temperature_slider, ollama_top_p_slider,
ollama_top_k_slider, ollama_repetition_penalty_slider,
tts_temperature_slider, tts_top_p_slider, tts_repetition_penalty_slider
]
auto_prefix_tts_checkbox.change(
lambda: update_prefix_checkboxes("tts"),
None,
[auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox]
)
auto_prefix_llm_checkbox.change(
lambda: update_prefix_checkboxes("llm"),
None,
[auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox]
)
plain_llm_checkbox.change(
lambda: update_prefix_checkboxes("plain"),
None,
[auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox]
)
all_inputs = [
text_input_box, audio_input_mic,
auto_prefix_tts_checkbox, auto_prefix_llm_checkbox, plain_llm_checkbox
] + param_inputs + [chatbot]
submit_button.click(
fn=process_input_blocks,
inputs=all_inputs,
outputs=[chatbot, text_input_box, audio_input_mic]
)
text_input_box.submit(
fn=process_input_blocks,
inputs=all_inputs,
outputs=[chatbot, text_input_box, audio_input_mic]
)
# --- Application Entry Point ---
if __name__ == "__main__":
print("-" * 50)
print(f"Launching Gradio {gr.__version__} Interface")
print(f"Whisper STT Model: {WHISPER_MODEL_NAME} on {stt_device}")
print(f"SNAC Vocoder loaded to {tts_device}")
print(f"Server URL: {SERVER_BASE_URL}")
print(f"LLM Model: {OLLAMA_MODEL}")
print(f"TTS Model: {TTS_MODEL}")
print("-" * 50)
print("Default Parameters:")
print(f" LLM: Temp={DEFAULT_OLLAMA_TEMP}, TopP={DEFAULT_OLLAMA_TOP_P}")
print(f" TTS: Temp={DEFAULT_TTS_TEMP}, TopP={DEFAULT_TTS_TOP_P}")
print("-" * 50)
print("Ensure your LM Studio server is running with both models loaded")
os.makedirs("temp_audio_files", exist_ok=True)
demo.launch(share=False)
print("Gradio Interface launched. Press Ctrl+C to stop.")