Spaces:
Sleeping
Sleeping
File size: 11,325 Bytes
f9b063b b719825 f9b063b 8b0cc53 b719825 8b0cc53 f9b063b b719825 f9b063b 8b0cc53 b719825 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b e5394a1 f9b063b e5394a1 f9b063b e5394a1 f9b063b e5394a1 f9b063b 8b0cc53 f9b063b 8b0cc53 69dd8d4 8b0cc53 f9b063b 69dd8d4 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 661c42a f9b063b 8b0cc53 69dd8d4 8b0cc53 f9b063b 69dd8d4 8b0cc53 f9b063b 8b0cc53 f9b063b 8b0cc53 f9b063b 661c42a 8b0cc53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import networkx as nx
from sklearn.cluster import HDBSCAN
import matplotlib.pyplot as plt
import numpy as np
from sklearn.manifold import TSNE
import umap
from sklearn.cluster import KMeans
from adjustText import adjust_text
from constants import high_level_families, primary_families_branches
def filter_languages_by_families(matrix, languages, families):
"""
Filters the languages based on their families.
Parameters:
- languages: list of languages to filter.
- families: list of families to include.
Returns:
- filtered_languages: list of languages that belong to the specified families.
"""
filtered_languages = [
(i, lang)
for i, lang in enumerate(languages)
if high_level_families[lang] in families
]
filtered_indices = [i for i, lang in filtered_languages]
filtered_languages = [lang for i, lang in filtered_languages]
filtered_matrix = matrix[np.ix_(filtered_indices, filtered_indices)]
return filtered_matrix, filtered_languages
def get_dynamic_color_map(n_colors):
"""
Generates a dynamic color map with the specified number of colors.
Parameters:
- n_colors: int, the number of distinct colors required.
Returns:
- color_map: list of RGB tuples representing the colors.
"""
cmap = plt.get_cmap("tab20") if n_colors <= 20 else plt.get_cmap("hsv")
color_map = [cmap(i / n_colors) for i in range(n_colors)]
return color_map
def cluster_languages_by_families(languages):
lang_families = [high_level_families[lang] for lang in languages]
legend = sorted(set(lang_families))
clusters = [legend.index(family) for family in lang_families]
return clusters, legend
def cluster_languages_by_subfamilies(languages):
labels = [
high_level_families[lang] + f" ({primary_families_branches[lang]})"
for lang in languages
]
legend = sorted(set(labels))
clusters = [legend.index(family) for family in labels]
return clusters, legend
def plot_mst(
matrix,
languages,
clusters,
legend=None,
fig_size=(20, 20),
):
"""
Plots a Minimum Spanning Tree (MST) from a given distance matrix, node labels, and cluster assignments.
Parameters:
- dist_matrix: 2D NumPy array (N x N) representing the pairwise distances between nodes.
- labels: list of length N containing the labels for each node.
- clusters: list of length N containing the cluster assignment (or ID) for each node.
"""
# Create an empty undirected graph
G = nx.Graph()
# Number of nodes
N = len(languages)
# Add edges to the graph from the distance matrix.
# Only iterate over the upper triangle of the matrix (i < j)
for i in range(N):
for j in range(i + 1, N):
G.add_edge(i, j, weight=matrix[i, j])
# Compute the Minimum Spanning Tree using NetworkX's built-in function.
mst = nx.minimum_spanning_tree(G)
# Choose a layout for the MST. Here we use Kamada-Kawai layout which considers edge weights.
pos = nx.kamada_kawai_layout(mst, weight="weight")
# Map each cluster to a color
unique_clusters = sorted(set(clusters))
cmap = get_dynamic_color_map(len(unique_clusters))
cluster_colors = {cluster: cmap[i] for i, cluster in enumerate(unique_clusters)}
node_colors = [cluster_colors.get(cluster) for cluster in clusters]
# Create a figure for plotting.
fig, ax = plt.subplots(figsize=fig_size)
# Draw the MST edges.
nx.draw_networkx_edges(mst, pos, edge_color="gray", ax=ax)
# Draw the nodes with colors corresponding to their clusters.
nx.draw_networkx_nodes(
mst, pos, node_color=node_colors, node_size=100, ax=ax, alpha=0.7
)
# Instead of directly drawing labels, we create text objects to adjust them later
texts = []
for i, label in enumerate(languages):
x, y = pos[i]
texts.append(ax.text(x, y, label, fontsize=10))
# Adjust text labels to minimize overlap.
# The arrowprops argument can draw arrows from labels to nodes if desired.
adjust_text(texts, expand_text=(1.05, 1.2))
# Add a legend for clusters
if legend is None:
legend = {cluster: str(cluster) for cluster in unique_clusters}
legend_handles = [
plt.Line2D(
[0],
[0],
marker="o",
color="w",
markerfacecolor=cluster_colors[cluster],
markersize=10,
alpha=0.7,
label=legend[cluster],
)
for cluster in unique_clusters
]
ax.legend(handles=legend_handles, title="Clusters", loc="best")
# Remove axis for clarity.
ax.axis("off")
# ax.set_title(f"Minimum Spanning Tree of Languages ({'Average' if use_average else f'{model}, {dataset}'})")
return fig
def cluster_languages_kmeans(dist_matrix, languages, n_clusters=5):
"""
Clusters languages using a distance matrix and KMeans.
Parameters:
- dist_matrix: 2D NumPy array (N x N) representing the pairwise distances between languages.
- n_clusters: int, the number of clusters to form.
Returns:
- filtered_matrix: 2D NumPy array of the filtered distance matrix.
- filtered_languages: list of filtered languages.
- filtered_clusters: list of filtered cluster assignments.
"""
# Perform clustering using KMeans
kmeans_model = KMeans(n_clusters=n_clusters, random_state=23)
clusters = kmeans_model.fit_predict(dist_matrix)
# # Count the number of elements in each cluster
# cluster_counts = np.bincount(clusters)
# # Identify clusters with more than 1 element
# valid_clusters = np.where(cluster_counts > 1)[0]
# # Filter out points belonging to clusters with only 1 element
# valid_indices = np.isin(clusters, valid_clusters)
# filtered_matrix = dist_matrix[np.ix_(valid_indices, valid_indices)]
# filtered_languages = np.array(languages)[valid_indices]
# filtered_clusters = np.array(clusters)[valid_indices]
# return filtered_matrix, filtered_languages, filtered_clusters
return dist_matrix, languages, clusters
def cluster_languages_hdbscan(dist_matrix, languages, min_cluster_size=2):
"""
Clusters languages using a distance matrix and HDBSCAN.
Parameters:
- dist_matrix: 2D NumPy array (N x N) representing the pairwise distances between languages.
- min_cluster_size: int, the minimum size of clusters.
Returns:
- clusters: list of length N containing the cluster assignment (or ID) for each language.
"""
# Perform clustering using HDBSCAN with the precomputed distance matrix
clustering_model = HDBSCAN(metric="precomputed", min_cluster_size=min_cluster_size)
clusters = clustering_model.fit_predict(dist_matrix)
# Filter out points belonging to cluster -1 using NumPy
valid_indices = np.where(clusters != -1)[0]
filtered_matrix = dist_matrix[np.ix_(valid_indices, valid_indices)]
filtered_languages = np.array(languages)[valid_indices]
filtered_clusters = np.array(clusters)[valid_indices]
return filtered_matrix, filtered_languages, filtered_clusters
def plot_distances_tsne(
matrix,
languages,
clusters,
legend=None,
fig_size=(16, 12),
):
"""
Plots all languages from the distances matrix using t-SNE and colors them by clusters.
"""
tsne = TSNE(n_components=2, random_state=23, metric="precomputed", init="random")
tsne_results = tsne.fit_transform(matrix)
# Map each cluster to a color
unique_clusters = sorted(set(clusters))
cmap = get_dynamic_color_map(len(unique_clusters))
cluster_colors = {cluster: cmap[i] for i, cluster in enumerate(unique_clusters)}
fig, ax = plt.subplots(figsize=fig_size)
scatter = ax.scatter(
tsne_results[:, 0],
tsne_results[:, 1],
c=[cluster_colors[cluster] for cluster in clusters],
alpha=0.7,
)
# for i, lang in enumerate(languages):
# ax.text(tsne_results[i, 0], tsne_results[i, 1], lang, fontsize=8, alpha=0.8)
# Instead of directly drawing labels, we create text objects to adjust them later
texts = []
for i, label in enumerate(languages):
x, y = tsne_results[i, 0], tsne_results[i, 1]
texts.append(ax.text(x, y, label, fontsize=10))
# Adjust text labels to minimize overlap.
# The arrowprops argument can draw arrows from labels to nodes if desired.
adjust_text(texts, expand_text=(1.05, 1.2))
# Add a legend for clusters
if legend is None:
legend = {cluster: str(cluster) for cluster in unique_clusters}
legend_handles = [
plt.Line2D(
[0],
[0],
marker="o",
color="w",
markerfacecolor=cluster_colors[cluster],
markersize=10,
label=legend[cluster],
)
for cluster in unique_clusters
]
ax.legend(handles=legend_handles, title="Clusters", loc="best")
# ax.set_title(
# f"t-SNE Visualization of Language Distances ({'Average' if use_average else f'{model}, {dataset}'})"
# )
# ax.set_xlabel("t-SNE Dimension 1")
# ax.set_ylabel("t-SNE Dimension 2")
ax.axis("off")
return fig
def plot_distances_umap(
matrix,
languages,
clusters,
legend=None,
fig_size=(16, 12),
):
"""
Plots all languages from the distances matrix using UMAP and colors them by clusters.
"""
umap_model = umap.UMAP(metric="precomputed", random_state=23)
umap_results = umap_model.fit_transform(matrix)
# Map each cluster to a color
unique_clusters = sorted(set(clusters))
cmap = get_dynamic_color_map(len(unique_clusters))
cluster_colors = {cluster: cmap[i] for i, cluster in enumerate(unique_clusters)}
fig, ax = plt.subplots(figsize=fig_size)
scatter = ax.scatter(
umap_results[:, 0],
umap_results[:, 1],
c=[cluster_colors[cluster] for cluster in clusters],
alpha=0.7,
)
# for i, lang in enumerate(languages):
# ax.text(umap_results[i, 0], umap_results[i, 1], lang, fontsize=8, alpha=0.8)
# Instead of directly drawing labels, we create text objects to adjust them later
texts = []
for i, label in enumerate(languages):
x, y = umap_results[i, 0], umap_results[i, 1]
texts.append(ax.text(x, y, label, fontsize=10))
# Adjust text labels to minimize overlap.
# The arrowprops argument can draw arrows from labels to nodes if desired.
adjust_text(texts, expand_text=(1.05, 1.2))
# Add a legend for clusters
if legend is None:
legend = {cluster: str(cluster) for cluster in unique_clusters}
legend_handles = [
plt.Line2D(
[0],
[0],
marker="o",
color="w",
markerfacecolor=cluster_colors[cluster],
markersize=10,
label=legend[cluster],
)
for cluster in unique_clusters
]
ax.legend(handles=legend_handles, title="Clusters", loc="best")
# ax.set_title(
# f"UMAP Visualization of Language Distances ({'Average' if use_average else f'{model}, {dataset}'})"
# )
# ax.set_xlabel("UMAP Dimension 1")
# ax.set_ylabel("UMAP Dimension 2")
ax.axis("off")
return fig
|