Update app.py
Browse files
app.py
CHANGED
@@ -22,6 +22,7 @@ dataset = load_dataset("mskov/miso_test", split="test").cast_column("audio", Aud
|
|
22 |
|
23 |
print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dataset[0]["audio"]["array"]), "and at audio : ", dataset[0]["audio"])
|
24 |
|
|
|
25 |
def transcribe(audio):
|
26 |
text = pipe(audio)["text"]
|
27 |
return text
|
@@ -35,27 +36,73 @@ iface = gr.Interface(
|
|
35 |
|
36 |
iface.launch()
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
with torch.no_grad():
|
43 |
-
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
44 |
-
print("outputs ", outputs)
|
45 |
-
|
46 |
-
# Convert predicted token IDs back to text
|
47 |
-
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
print("labels are ", labels)
|
52 |
|
53 |
-
#
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
# Print or return WER score
|
57 |
-
print(f"Word Error Rate (WER): {wer_score}")
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
'''
|
60 |
print("check check")
|
61 |
print(inputs)
|
|
|
22 |
|
23 |
print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dataset[0]["audio"]["array"]), "and at audio : ", dataset[0]["audio"])
|
24 |
|
25 |
+
|
26 |
def transcribe(audio):
|
27 |
text = pipe(audio)["text"]
|
28 |
return text
|
|
|
36 |
|
37 |
iface.launch()
|
38 |
|
39 |
+
def evalWhisper(model, dataset):
|
40 |
+
model.eval()
|
41 |
+
print("model.eval ", model.eval())
|
42 |
+
|
43 |
+
# Define a list to store the print statements
|
44 |
+
log_texts = []
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = model(**input_data) # Define input_data appropriately
|
48 |
+
print("outputs ", outputs)
|
49 |
+
log_texts.append(f"outputs: {outputs}")
|
50 |
+
|
51 |
+
# Convert predicted token IDs back to text
|
52 |
+
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
|
53 |
+
|
54 |
+
# Get ground truth labels from the dataset
|
55 |
+
labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
|
56 |
+
print("labels are ", labels)
|
57 |
+
log_texts.append(f"labels: {labels}")
|
58 |
+
|
59 |
+
# Compute WER
|
60 |
+
wer_score = wer(labels, predicted_text) # Define wer function
|
61 |
+
|
62 |
+
# Print or return WER score
|
63 |
+
wer_message = f"Word Error Rate (WER): {wer_score}"
|
64 |
+
print(wer_message)
|
65 |
+
log_texts.append(wer_message)
|
66 |
|
67 |
+
print(log_texts)
|
68 |
+
|
69 |
+
return log_texts
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Call evalWhisper and get the log texts
|
72 |
+
log_texts = evalWhisper(model, dataset)
|
|
|
73 |
|
74 |
+
# Display the log texts using gr.Interface
|
75 |
+
log_text = "\n".join(log_texts)
|
76 |
+
log_interface = gr.Interface(
|
77 |
+
fn=lambda: log_text,
|
78 |
+
inputs=None,
|
79 |
+
outputs="text",
|
80 |
+
title="EvalWhisper Log",
|
81 |
+
)
|
82 |
+
log_interface.launch()
|
83 |
|
|
|
|
|
84 |
|
85 |
+
'''
|
86 |
+
# Evaluate the model
|
87 |
+
model.eval()
|
88 |
+
print("model.eval ", model.eval())
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
91 |
+
print("outputs ", outputs)
|
92 |
+
|
93 |
+
# Convert predicted token IDs back to text
|
94 |
+
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
|
95 |
+
|
96 |
+
# Get ground truth labels from the dataset
|
97 |
+
labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
|
98 |
+
print("labels are ", labels)
|
99 |
+
|
100 |
+
# Compute WER
|
101 |
+
wer_score = wer(labels, predicted_text)
|
102 |
+
|
103 |
+
# Print or return WER score
|
104 |
+
print(f"Word Error Rate (WER): {wer_score}")
|
105 |
+
'''
|
106 |
'''
|
107 |
print("check check")
|
108 |
print(inputs)
|