whisper-tg / app.py
muhtasham's picture
WIP
2a49988
raw
history blame
9.05 kB
import spaces
import torch
import gradio as gr
from transformers import pipeline
import subprocess
from loguru import logger
import datetime
import tempfile
import os
import json
from pathlib import Path
# Configure loguru
logger.add("app.log", rotation="500 MB", level="DEBUG")
MODEL_NAME = "muhtasham/whisper-tg"
def format_time(seconds):
"""Convert seconds to SRT time format (HH:MM:SS,mmm)"""
td = datetime.timedelta(seconds=float(seconds))
hours = td.seconds // 3600
minutes = (td.seconds % 3600) // 60
seconds = td.seconds % 60
milliseconds = td.microseconds // 1000
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
def generate_srt(chunks):
"""Generate SRT format subtitles from chunks"""
srt_content = []
for i, chunk in enumerate(chunks, 1):
start_time = format_time(chunk["timestamp"][0])
end_time = format_time(chunk["timestamp"][1])
text = chunk["text"].strip()
srt_content.append(f"{i}\n{start_time} --> {end_time}\n{text}\n\n")
return "".join(srt_content)
def save_srt_to_file(srt_content):
"""Save SRT content to a temporary file and return the file path"""
if not srt_content:
return None
# Create a temporary file with .srt extension
temp_file = tempfile.NamedTemporaryFile(suffix='.srt', delete=False)
temp_file.write(srt_content.encode('utf-8'))
temp_file.close()
return temp_file.name
# Check if ffmpeg is installed
def check_ffmpeg():
try:
subprocess.run(['ffmpeg', '-version'], capture_output=True, check=True)
logger.info("ffmpeg check passed successfully")
except (subprocess.CalledProcessError, FileNotFoundError) as e:
logger.error(f"ffmpeg check failed: {str(e)}")
raise gr.Error("ffmpeg is not installed. Please install ffmpeg to use this application.")
# Initialize ffmpeg check
check_ffmpeg()
device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
def create_pipeline(chunk_length_s):
"""Create a new pipeline with specified chunk length"""
return pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=chunk_length_s,
device=device,
)
# Initialize default pipeline
pipe = create_pipeline(30)
logger.info(f"Pipeline initialized: {pipe}")
@spaces.GPU
def transcribe(inputs, return_timestamps, generate_subs, batch_size, chunk_length_s):
if inputs is None:
logger.warning("No audio file submitted")
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
try:
logger.info(f"Processing audio file: {inputs}")
# Create new pipeline with specified chunk length
current_pipe = create_pipeline(chunk_length_s)
result = current_pipe(inputs, batch_size=batch_size, return_timestamps=return_timestamps)
logger.debug(f"Pipeline result: {result}")
# Format response as JSON
formatted_result = {
"text": result["text"]
}
chunks = []
if return_timestamps and "chunks" in result:
logger.info(f"Processing {len(result['chunks'])} chunks")
for i, chunk in enumerate(result["chunks"]):
logger.debug(f"Processing chunk {i}: {chunk}")
try:
start_time = chunk.get("timestamp", [None, None])[0]
end_time = chunk.get("timestamp", [None, None])[1]
text = chunk.get("text", "").strip()
if start_time is not None and end_time is not None:
chunk_data = {
"text": text,
"timestamp": [start_time, end_time]
}
chunks.append(chunk_data)
else:
logger.warning(f"Invalid timestamp in chunk {i}: {chunk}")
except Exception as chunk_error:
logger.error(f"Error processing chunk {i}: {str(chunk_error)}")
continue
formatted_result["chunks"] = chunks
logger.info(f"Successfully processed transcription with {len(chunks)} chunks")
# Generate subtitles if requested
srt_file = None
if generate_subs and chunks:
logger.info("Generating SRT subtitles")
srt_content = generate_srt(chunks)
srt_file = save_srt_to_file(srt_content)
logger.info("SRT subtitles generated successfully")
return formatted_result, srt_file
except Exception as e:
logger.exception(f"Error during transcription: {str(e)}")
raise gr.Error(f"Failed to transcribe audio: {str(e)}")
# Create a custom flagging callback
class TranscriptionFlaggingCallback(gr.FlaggingCallback):
def __init__(self, flagging_dir):
self.flagging_dir = Path(flagging_dir)
self.flagging_dir.mkdir(exist_ok=True)
self.log_file = self.flagging_dir / "flagged_data.jsonl"
def setup(self, components, flagging_dir):
pass
def flag(self, components, flag_data, flag_option, username):
# Create a unique filename for the audio file
audio_file = components[0] # First component is the audio input
if audio_file:
audio_filename = os.path.basename(audio_file)
# Copy audio file to flagged directory
audio_dir = self.flagging_dir / "audio"
audio_dir.mkdir(exist_ok=True)
import shutil
shutil.copy2(audio_file, audio_dir / audio_filename)
else:
audio_filename = None
# Prepare the data to save
data = {
"timestamp": datetime.datetime.now().isoformat(),
"audio_file": audio_filename,
"transcription": components[1], # JSON output
"feedback": flag_option,
"correction": components[2] if len(components) > 2 else None, # Correction text if provided
"username": username
}
# Append to JSONL file
with open(self.log_file, "a", encoding="utf-8") as f:
f.write(json.dumps(data) + "\n")
logger.info(f"Saved flagged data: {data}")
demo = gr.Blocks(theme=gr.themes.Ocean())
# Create flagging callback
flagging_callback = TranscriptionFlaggingCallback("flagged_data")
# Define interfaces first
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Checkbox(label="Include timestamps", value=True),
gr.Checkbox(label="Generate subtitles", value=True),
gr.Slider(minimum=1, maximum=128, value=8, step=1, label="Batch Size"),
gr.Slider(minimum=5, maximum=30, value=15, step=5, label="Chunk Length (seconds)"),
],
outputs=[
gr.JSON(label="Transcription", open=True),
gr.File(label="Subtitles (SRT)", visible=True),
gr.Textbox(label="Correction", visible=False), # Hidden correction input
],
title="Whisper Large V3 Turbo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
flagging_mode="manual",
flagging_options=["👍 Good", "👎 Bad"],
flagging_dir="flagged_data",
flagging_callback=flagging_callback
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Checkbox(label="Include timestamps", value=True),
gr.Checkbox(label="Generate subtitles", value=True),
gr.Slider(minimum=1, maximum=128, value=8, step=1, label="Batch Size"),
gr.Slider(minimum=5, maximum=30, value=15, step=5, label="Chunk Length (seconds)"),
],
outputs=[
gr.JSON(label="Transcription", open=True),
gr.File(label="Subtitles (SRT)", visible=True),
gr.Textbox(label="Correction", visible=False), # Hidden correction input
],
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
flagging_mode="manual",
flagging_options=["👍 Good", "👎 Bad"],
flagging_dir="flagged_data",
flagging_callback=flagging_callback
)
# Then set up the demo with the interfaces
with demo:
gr.TabbedInterface([file_transcribe, mf_transcribe], ["Audio file", "Microphone"])
logger.info("Starting Gradio interface")
demo.queue().launch(ssr_mode=False)