File size: 9,045 Bytes
22095b0
 
6c226f9
22095b0
daf7f7b
 
c5741b3
2f8a4bc
 
2a49988
 
6c226f9
7c39690
 
1e5e969
22095b0
6c226f9
c5741b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f8a4bc
 
 
 
 
 
 
 
 
 
 
daf7f7b
 
 
 
7c39690
 
 
daf7f7b
 
 
 
 
22095b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c0cd8e
7c39690
3c0cd8e
6c226f9
1e5e969
22095b0
 
 
 
 
1e5e969
0147bd5
 
eb5510b
0147bd5
 
c5741b3
eb5510b
7c39690
 
 
 
 
 
 
 
 
c5741b3
0147bd5
 
c5741b3
 
7c39690
 
 
 
 
22095b0
 
c5741b3
 
 
2f8a4bc
c5741b3
 
 
2f8a4bc
c5741b3
1e5e969
2f8a4bc
1e5e969
7c39690
1e5e969
6c226f9
2a49988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47407ef
6c226f9
2a49988
 
 
22095b0
6c226f9
 
 
3ce82e9
eb5510b
c5741b3
2a49988
22095b0
3c0cd8e
478eee2
0147bd5
c5741b3
2a49988
478eee2
17f14b2
3c0cd8e
22095b0
 
 
3c0cd8e
0802c30
2f8a4bc
2a49988
 
3c0cd8e
 
 
 
 
3ce82e9
eb5510b
c5741b3
06acc93
 
6c226f9
478eee2
0147bd5
c5741b3
2a49988
478eee2
a5bfe25
6c226f9
22095b0
 
 
6c226f9
0802c30
2f8a4bc
2a49988
 
6c226f9
 
22095b0
6c226f9
2a49988
6c226f9
7c39690
47407ef
7097513
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import spaces
import torch
import gradio as gr
from transformers import pipeline
import subprocess
from loguru import logger
import datetime
import tempfile
import os
import json
from pathlib import Path

# Configure loguru
logger.add("app.log", rotation="500 MB", level="DEBUG")

MODEL_NAME = "muhtasham/whisper-tg"

def format_time(seconds):
    """Convert seconds to SRT time format (HH:MM:SS,mmm)"""
    td = datetime.timedelta(seconds=float(seconds))
    hours = td.seconds // 3600
    minutes = (td.seconds % 3600) // 60
    seconds = td.seconds % 60
    milliseconds = td.microseconds // 1000
    return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"

def generate_srt(chunks):
    """Generate SRT format subtitles from chunks"""
    srt_content = []
    for i, chunk in enumerate(chunks, 1):
        start_time = format_time(chunk["timestamp"][0])
        end_time = format_time(chunk["timestamp"][1])
        text = chunk["text"].strip()
        srt_content.append(f"{i}\n{start_time} --> {end_time}\n{text}\n\n")
    return "".join(srt_content)

def save_srt_to_file(srt_content):
    """Save SRT content to a temporary file and return the file path"""
    if not srt_content:
        return None
    
    # Create a temporary file with .srt extension
    temp_file = tempfile.NamedTemporaryFile(suffix='.srt', delete=False)
    temp_file.write(srt_content.encode('utf-8'))
    temp_file.close()
    return temp_file.name

# Check if ffmpeg is installed
def check_ffmpeg():
    try:
        subprocess.run(['ffmpeg', '-version'], capture_output=True, check=True)
        logger.info("ffmpeg check passed successfully")
    except (subprocess.CalledProcessError, FileNotFoundError) as e:
        logger.error(f"ffmpeg check failed: {str(e)}")
        raise gr.Error("ffmpeg is not installed. Please install ffmpeg to use this application.")

# Initialize ffmpeg check
check_ffmpeg()

device = 0 if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")

def create_pipeline(chunk_length_s):
    """Create a new pipeline with specified chunk length"""
    return pipeline(
        task="automatic-speech-recognition",
        model=MODEL_NAME,
        chunk_length_s=chunk_length_s,
        device=device,
    )

# Initialize default pipeline
pipe = create_pipeline(30)
logger.info(f"Pipeline initialized: {pipe}")

@spaces.GPU
def transcribe(inputs, return_timestamps, generate_subs, batch_size, chunk_length_s):
    if inputs is None:
        logger.warning("No audio file submitted")
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    try:
        logger.info(f"Processing audio file: {inputs}")
        # Create new pipeline with specified chunk length
        current_pipe = create_pipeline(chunk_length_s)
        result = current_pipe(inputs, batch_size=batch_size, return_timestamps=return_timestamps)
        logger.debug(f"Pipeline result: {result}")
        
        # Format response as JSON
        formatted_result = {
            "text": result["text"]
        }
        
        chunks = []
        if return_timestamps and "chunks" in result:
            logger.info(f"Processing {len(result['chunks'])} chunks")
            for i, chunk in enumerate(result["chunks"]):
                logger.debug(f"Processing chunk {i}: {chunk}")
                try:
                    start_time = chunk.get("timestamp", [None, None])[0]
                    end_time = chunk.get("timestamp", [None, None])[1]
                    text = chunk.get("text", "").strip()
                    
                    if start_time is not None and end_time is not None:
                        chunk_data = {
                            "text": text,
                            "timestamp": [start_time, end_time]
                        }
                        chunks.append(chunk_data)
                    else:
                        logger.warning(f"Invalid timestamp in chunk {i}: {chunk}")
                except Exception as chunk_error:
                    logger.error(f"Error processing chunk {i}: {str(chunk_error)}")
                    continue
            
            formatted_result["chunks"] = chunks
            logger.info(f"Successfully processed transcription with {len(chunks)} chunks")
        
        # Generate subtitles if requested
        srt_file = None
        if generate_subs and chunks:
            logger.info("Generating SRT subtitles")
            srt_content = generate_srt(chunks)
            srt_file = save_srt_to_file(srt_content)
            logger.info("SRT subtitles generated successfully")
        
        return formatted_result, srt_file
    except Exception as e:
        logger.exception(f"Error during transcription: {str(e)}")
        raise gr.Error(f"Failed to transcribe audio: {str(e)}")

# Create a custom flagging callback
class TranscriptionFlaggingCallback(gr.FlaggingCallback):
    def __init__(self, flagging_dir):
        self.flagging_dir = Path(flagging_dir)
        self.flagging_dir.mkdir(exist_ok=True)
        self.log_file = self.flagging_dir / "flagged_data.jsonl"
        
    def setup(self, components, flagging_dir):
        pass
        
    def flag(self, components, flag_data, flag_option, username):
        # Create a unique filename for the audio file
        audio_file = components[0]  # First component is the audio input
        if audio_file:
            audio_filename = os.path.basename(audio_file)
            # Copy audio file to flagged directory
            audio_dir = self.flagging_dir / "audio"
            audio_dir.mkdir(exist_ok=True)
            import shutil
            shutil.copy2(audio_file, audio_dir / audio_filename)
        else:
            audio_filename = None
            
        # Prepare the data to save
        data = {
            "timestamp": datetime.datetime.now().isoformat(),
            "audio_file": audio_filename,
            "transcription": components[1],  # JSON output
            "feedback": flag_option,
            "correction": components[2] if len(components) > 2 else None,  # Correction text if provided
            "username": username
        }
        
        # Append to JSONL file
        with open(self.log_file, "a", encoding="utf-8") as f:
            f.write(json.dumps(data) + "\n")
            
        logger.info(f"Saved flagged data: {data}")

demo = gr.Blocks(theme=gr.themes.Ocean())

# Create flagging callback
flagging_callback = TranscriptionFlaggingCallback("flagged_data")

# Define interfaces first
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Checkbox(label="Include timestamps", value=True),
        gr.Checkbox(label="Generate subtitles", value=True),
        gr.Slider(minimum=1, maximum=128, value=8, step=1, label="Batch Size"),
        gr.Slider(minimum=5, maximum=30, value=15, step=5, label="Chunk Length (seconds)"),
    ],
    outputs=[
        gr.JSON(label="Transcription", open=True),
        gr.File(label="Subtitles (SRT)", visible=True),
        gr.Textbox(label="Correction", visible=False),  # Hidden correction input
    ],
    title="Whisper Large V3 Turbo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    flagging_mode="manual",
    flagging_options=["👍 Good", "👎 Bad"],
    flagging_dir="flagged_data",
    flagging_callback=flagging_callback
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Checkbox(label="Include timestamps", value=True),
        gr.Checkbox(label="Generate subtitles", value=True),
        gr.Slider(minimum=1, maximum=128, value=8, step=1, label="Batch Size"),
        gr.Slider(minimum=5, maximum=30, value=15, step=5, label="Chunk Length (seconds)"),
    ],
    outputs=[
        gr.JSON(label="Transcription", open=True),
        gr.File(label="Subtitles (SRT)", visible=True),
        gr.Textbox(label="Correction", visible=False),  # Hidden correction input
    ],
    title="Whisper Large V3: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    flagging_mode="manual",
    flagging_options=["👍 Good", "👎 Bad"],
    flagging_dir="flagged_data",
    flagging_callback=flagging_callback
)

# Then set up the demo with the interfaces
with demo:
    gr.TabbedInterface([file_transcribe, mf_transcribe], ["Audio file", "Microphone"])

logger.info("Starting Gradio interface")
demo.queue().launch(ssr_mode=False)