Spaces:
Paused
Paused
feat: enhance transcription with configurable parameters and feedback system
Browse files- Add configurable batch size (1-32) and chunk length (5-60s) parameters
- Implement comprehensive feedback system with quick rating and detailed corrections
- Switch to local pipeline processing with GPU support
- Add logging for better debugging
- Improve error handling and user feedback
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
import subprocess
|
4 |
from loguru import logger
|
5 |
import datetime
|
@@ -7,7 +9,7 @@ import datetime
|
|
7 |
# Configure loguru
|
8 |
logger.add("app.log", rotation="500 MB", level="DEBUG")
|
9 |
|
10 |
-
|
11 |
|
12 |
def format_time(seconds):
|
13 |
"""Convert seconds to SRT time format (HH:MM:SS,mmm)"""
|
@@ -40,44 +42,35 @@ def check_ffmpeg():
|
|
40 |
# Initialize ffmpeg check
|
41 |
check_ffmpeg()
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if inputs is None:
|
45 |
logger.warning("No audio file submitted")
|
46 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
47 |
|
48 |
-
headers = {
|
49 |
-
"Accept": "application/json",
|
50 |
-
"Content-Type": "audio/flac"
|
51 |
-
}
|
52 |
-
logger.debug(f"Using headers: {headers}")
|
53 |
-
|
54 |
try:
|
55 |
-
logger.info(f"
|
56 |
-
with
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
# Add parameters to request
|
61 |
-
params = {
|
62 |
-
"return_timestamps": return_timestamps
|
63 |
-
}
|
64 |
-
logger.debug(f"Request parameters: {params}")
|
65 |
-
|
66 |
-
logger.info("Sending request to API")
|
67 |
-
response = requests.post(API_URL, headers=headers, data=data, params=params)
|
68 |
-
logger.debug(f"API Response status: {response.status_code}")
|
69 |
-
|
70 |
-
result = response.json()
|
71 |
-
logger.debug(f"API Response: {result}")
|
72 |
|
73 |
-
if "error" in result:
|
74 |
-
logger.error(f"API returned error: {result['error']}")
|
75 |
-
raise gr.Error(f"API Error: {result['error']}")
|
76 |
-
|
77 |
-
if "text" not in result:
|
78 |
-
logger.error("No transcription text in response")
|
79 |
-
raise gr.Error("No transcription text in response")
|
80 |
-
|
81 |
# Format response as JSON
|
82 |
formatted_result = {
|
83 |
"text": result["text"]
|
@@ -98,13 +91,14 @@ def transcribe(inputs, return_timestamps, generate_subs):
|
|
98 |
"text": text,
|
99 |
"timestamp": [start_time, end_time]
|
100 |
}
|
101 |
-
formatted_result["chunks"] = chunks
|
102 |
chunks.append(chunk_data)
|
103 |
else:
|
104 |
logger.warning(f"Invalid timestamp in chunk {i}: {chunk}")
|
105 |
except Exception as chunk_error:
|
106 |
logger.error(f"Error processing chunk {i}: {str(chunk_error)}")
|
107 |
continue
|
|
|
|
|
108 |
logger.info(f"Successfully processed transcription with {len(chunks)} chunks")
|
109 |
|
110 |
# Generate subtitles if requested
|
@@ -121,12 +115,18 @@ def transcribe(inputs, return_timestamps, generate_subs):
|
|
121 |
|
122 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
123 |
|
|
|
|
|
|
|
|
|
124 |
mf_transcribe = gr.Interface(
|
125 |
fn=transcribe,
|
126 |
inputs=[
|
127 |
gr.Audio(sources="microphone", type="filepath"),
|
128 |
gr.Checkbox(label="Include timestamps", value=True),
|
129 |
gr.Checkbox(label="Generate subtitles", value=True),
|
|
|
|
|
130 |
],
|
131 |
outputs=[
|
132 |
gr.JSON(label="Transcription", open=True),
|
@@ -134,16 +134,11 @@ mf_transcribe = gr.Interface(
|
|
134 |
],
|
135 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
136 |
description=(
|
137 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! "
|
138 |
-
"
|
|
|
139 |
),
|
140 |
-
flagging_mode="manual"
|
141 |
-
flagging_options=[
|
142 |
-
"Incorrect text",
|
143 |
-
"Incorrect timestamp",
|
144 |
-
"Other issue"
|
145 |
-
],
|
146 |
-
flagging_dir="flagged_data"
|
147 |
)
|
148 |
|
149 |
file_transcribe = gr.Interface(
|
@@ -152,6 +147,8 @@ file_transcribe = gr.Interface(
|
|
152 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
153 |
gr.Checkbox(label="Include timestamps", value=True),
|
154 |
gr.Checkbox(label="Generate subtitles", value=True),
|
|
|
|
|
155 |
],
|
156 |
outputs=[
|
157 |
gr.JSON(label="Transcription", open=True),
|
@@ -159,20 +156,95 @@ file_transcribe = gr.Interface(
|
|
159 |
],
|
160 |
title="Whisper Large V3: Transcribe Audio",
|
161 |
description=(
|
162 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! "
|
163 |
-
"
|
|
|
164 |
),
|
165 |
-
flagging_mode="manual"
|
166 |
-
flagging_options=[
|
167 |
-
"Incorrect text",
|
168 |
-
"Incorrect timestamp",
|
169 |
-
"Other issue"
|
170 |
-
],
|
171 |
-
flagging_dir="flagged_data"
|
172 |
)
|
173 |
|
|
|
174 |
with demo:
|
175 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
logger.info("Starting Gradio interface")
|
178 |
demo.queue().launch(ssr_mode=False)
|
|
|
1 |
+
import spaces
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import pipeline
|
5 |
import subprocess
|
6 |
from loguru import logger
|
7 |
import datetime
|
|
|
9 |
# Configure loguru
|
10 |
logger.add("app.log", rotation="500 MB", level="DEBUG")
|
11 |
|
12 |
+
MODEL_NAME = "muhtasham/whisper-tg"
|
13 |
|
14 |
def format_time(seconds):
|
15 |
"""Convert seconds to SRT time format (HH:MM:SS,mmm)"""
|
|
|
42 |
# Initialize ffmpeg check
|
43 |
check_ffmpeg()
|
44 |
|
45 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
46 |
+
logger.info(f"Using device: {device}")
|
47 |
+
|
48 |
+
def create_pipeline(chunk_length_s):
|
49 |
+
"""Create a new pipeline with specified chunk length"""
|
50 |
+
return pipeline(
|
51 |
+
task="automatic-speech-recognition",
|
52 |
+
model=MODEL_NAME,
|
53 |
+
chunk_length_s=chunk_length_s,
|
54 |
+
device=device,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Initialize default pipeline
|
58 |
+
pipe = create_pipeline(30)
|
59 |
+
logger.info(f"Pipeline initialized: {pipe}")
|
60 |
+
|
61 |
+
@spaces.GPU
|
62 |
+
def transcribe(inputs, return_timestamps, generate_subs, batch_size, chunk_length_s):
|
63 |
if inputs is None:
|
64 |
logger.warning("No audio file submitted")
|
65 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
try:
|
68 |
+
logger.info(f"Processing audio file: {inputs}")
|
69 |
+
# Create new pipeline with specified chunk length
|
70 |
+
current_pipe = create_pipeline(chunk_length_s)
|
71 |
+
result = current_pipe(inputs, batch_size=batch_size, return_timestamps=return_timestamps)
|
72 |
+
logger.debug(f"Pipeline result: {result}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# Format response as JSON
|
75 |
formatted_result = {
|
76 |
"text": result["text"]
|
|
|
91 |
"text": text,
|
92 |
"timestamp": [start_time, end_time]
|
93 |
}
|
|
|
94 |
chunks.append(chunk_data)
|
95 |
else:
|
96 |
logger.warning(f"Invalid timestamp in chunk {i}: {chunk}")
|
97 |
except Exception as chunk_error:
|
98 |
logger.error(f"Error processing chunk {i}: {str(chunk_error)}")
|
99 |
continue
|
100 |
+
|
101 |
+
formatted_result["chunks"] = chunks
|
102 |
logger.info(f"Successfully processed transcription with {len(chunks)} chunks")
|
103 |
|
104 |
# Generate subtitles if requested
|
|
|
115 |
|
116 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
117 |
|
118 |
+
# Create flagging callback with custom options
|
119 |
+
flagging_callback = gr.CSVLogger()
|
120 |
+
|
121 |
+
# Define interfaces first
|
122 |
mf_transcribe = gr.Interface(
|
123 |
fn=transcribe,
|
124 |
inputs=[
|
125 |
gr.Audio(sources="microphone", type="filepath"),
|
126 |
gr.Checkbox(label="Include timestamps", value=True),
|
127 |
gr.Checkbox(label="Generate subtitles", value=True),
|
128 |
+
gr.Slider(minimum=1, maximum=32, value=8, step=1, label="Batch Size"),
|
129 |
+
gr.Slider(minimum=5, maximum=30, value=15, step=5, label="Chunk Length (seconds)"),
|
130 |
],
|
131 |
outputs=[
|
132 |
gr.JSON(label="Transcription", open=True),
|
|
|
134 |
],
|
135 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
136 |
description=(
|
137 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
138 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
139 |
+
" of arbitrary length."
|
140 |
),
|
141 |
+
flagging_mode="manual"
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
|
144 |
file_transcribe = gr.Interface(
|
|
|
147 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
148 |
gr.Checkbox(label="Include timestamps", value=True),
|
149 |
gr.Checkbox(label="Generate subtitles", value=True),
|
150 |
+
gr.Slider(minimum=1, maximum=32, value=8, step=1, label="Batch Size"),
|
151 |
+
gr.Slider(minimum=10, maximum=60, value=30, step=5, label="Chunk Length (seconds)"),
|
152 |
],
|
153 |
outputs=[
|
154 |
gr.JSON(label="Transcription", open=True),
|
|
|
156 |
],
|
157 |
title="Whisper Large V3: Transcribe Audio",
|
158 |
description=(
|
159 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
160 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
161 |
+
" of arbitrary length."
|
162 |
),
|
163 |
+
flagging_mode="manual"
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
|
166 |
+
# Then set up the demo with the interfaces
|
167 |
with demo:
|
168 |
+
with gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) as tabs:
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Column():
|
171 |
+
# Quick feedback
|
172 |
+
feedback_rating = gr.Radio(
|
173 |
+
choices=["👍 Good", "👎 Bad"],
|
174 |
+
label="Was this transcription accurate?",
|
175 |
+
value="👍 Good"
|
176 |
+
)
|
177 |
+
|
178 |
+
# Detailed feedback
|
179 |
+
with gr.Accordion("Detailed Feedback", open=False):
|
180 |
+
flag_type = gr.Radio(
|
181 |
+
choices=[
|
182 |
+
"Text Issue",
|
183 |
+
"Timestamp Issue",
|
184 |
+
"Missing Content",
|
185 |
+
"Other Issue"
|
186 |
+
],
|
187 |
+
label="What type of issue did you find?",
|
188 |
+
value="Text Issue"
|
189 |
+
)
|
190 |
+
|
191 |
+
# Correction submission
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column():
|
194 |
+
gr.Markdown("### Original")
|
195 |
+
original_text = gr.Textbox(
|
196 |
+
label="Original text",
|
197 |
+
interactive=False,
|
198 |
+
lines=2
|
199 |
+
)
|
200 |
+
with gr.Column():
|
201 |
+
gr.Markdown("### Correction")
|
202 |
+
corrected_text = gr.Textbox(
|
203 |
+
label="Corrected text",
|
204 |
+
placeholder="Enter the correct text here",
|
205 |
+
lines=2
|
206 |
+
)
|
207 |
+
|
208 |
+
# Timestamp correction
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
gr.Markdown("### Original Timestamp")
|
212 |
+
original_timestamp = gr.Textbox(
|
213 |
+
label="Original timestamp",
|
214 |
+
interactive=False,
|
215 |
+
lines=1
|
216 |
+
)
|
217 |
+
with gr.Column():
|
218 |
+
gr.Markdown("### Corrected Timestamp")
|
219 |
+
corrected_timestamp = gr.Textbox(
|
220 |
+
label="Corrected timestamp (HH:MM:SS,mmm)",
|
221 |
+
placeholder="00:00:00,000",
|
222 |
+
lines=1
|
223 |
+
)
|
224 |
+
|
225 |
+
flag_details = gr.Textbox(
|
226 |
+
label="Additional notes",
|
227 |
+
placeholder="Any other details about the issue...",
|
228 |
+
lines=3
|
229 |
+
)
|
230 |
+
|
231 |
+
flag_button = gr.Button("Submit Feedback")
|
232 |
+
|
233 |
+
# Setup flagging callback with all feedback components
|
234 |
+
flagging_callback.setup(
|
235 |
+
[tabs, feedback_rating, flag_type, original_text, corrected_text,
|
236 |
+
original_timestamp, corrected_timestamp, flag_details],
|
237 |
+
"flagged_data"
|
238 |
+
)
|
239 |
+
|
240 |
+
# Handle flag submission
|
241 |
+
flag_button.click(
|
242 |
+
lambda *args: flagging_callback.flag(list(args)),
|
243 |
+
[tabs, feedback_rating, flag_type, original_text, corrected_text,
|
244 |
+
original_timestamp, corrected_timestamp, flag_details],
|
245 |
+
None,
|
246 |
+
preprocess=False
|
247 |
+
)
|
248 |
|
249 |
logger.info("Starting Gradio interface")
|
250 |
demo.queue().launch(ssr_mode=False)
|