Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,834 Bytes
b040570 a5bbb73 b040570 220c7ea b040570 220c7ea b040570 52010af b040570 220c7ea b040570 220c7ea b040570 220c7ea b040570 220c7ea b040570 220c7ea b040570 f1a281a b040570 ca69f4a b040570 220c7ea 8b5368b 220c7ea b040570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# app.py
import os
import sys
import time
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError
from pathlib import Path
import tempfile
from pydub import AudioSegment
# Add the src directory to the system path to allow for local imports
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
from models.inference.moda_test import LiveVASAPipeline, emo_map, set_seed
# --- Configuration ---
# Set seed for reproducibility
set_seed(42)
# Paths and constants for the Gradio demo
DEFAULT_CFG_PATH = "configs/audio2motion/inference/inference.yaml"
DEFAULT_MOTION_MEAN_STD_PATH = "src/datasets/mean.pt"
DEFAULT_SILENT_AUDIO_PATH = "src/examples/silent-audio.wav"
OUTPUT_DIR = "gradio_output"
WEIGHTS_DIR = "pretrain_weights"
REPO_ID = "lixinyizju/moda"
# --- Download Pre-trained Weights from Hugging Face Hub ---
def download_weights():
"""
Downloads pre-trained weights from Hugging Face Hub if they don't exist locally.
"""
# A simple check for a key file to see if the download is likely complete
motion_model_file = os.path.join(WEIGHTS_DIR, "moda", "net-200.pth")
if not os.path.exists(motion_model_file):
print(f"Weights not found locally. Downloading from Hugging Face Hub repo '{REPO_ID}'...")
print(f"This may take a while depending on your internet connection.")
try:
snapshot_download(
repo_id=REPO_ID,
local_dir=WEIGHTS_DIR,
local_dir_use_symlinks=False, # Use False to copy files directly; safer for Windows
resume_download=True,
)
print("Weights downloaded successfully.")
except GatedRepoError:
raise gr.Error(f"Access to the repository '{REPO_ID}' is gated. Please visit https://huggingface.co/{REPO_ID} to request access.")
except (RepositoryNotFoundError, RevisionNotFoundError):
raise gr.Error(f"The repository '{REPO_ID}' was not found. Please check the repository ID.")
except Exception as e:
print(f"An error occurred during download: {e}")
raise gr.Error(f"Failed to download models. Please check your internet connection and try again. Error: {e}")
else:
print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.")
# --- Audio Conversion Function ---
def ensure_wav_format(audio_path):
"""
Ensures the audio file is in WAV format. If not, converts it to WAV.
Returns the path to the WAV file (either original or converted).
"""
if audio_path is None:
return None
audio_path = Path(audio_path)
# Check if already WAV
if audio_path.suffix.lower() == '.wav':
print(f"Audio is already in WAV format: {audio_path}")
return str(audio_path)
# Convert to WAV
print(f"Converting audio from {audio_path.suffix} to WAV format...")
try:
# Load the audio file
audio = AudioSegment.from_file(audio_path)
# Create a temporary WAV file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
wav_path = tmp_file.name
# Export as WAV with standard settings
audio.export(
wav_path,
format='wav',
parameters=["-ar", "16000", "-ac", "1"] # 16kHz, mono - adjust if your model needs different settings
)
print(f"Audio converted successfully to: {wav_path}")
return wav_path
except Exception as e:
print(f"Error converting audio: {e}")
raise gr.Error(f"Failed to convert audio file to WAV format. Error: {e}")
# --- Initialization ---
# Create output directory if it doesn't exist
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Download weights before initializing the pipeline
download_weights()
# Instantiate the pipeline once to avoid reloading models on every request
print("Initializing MoDA pipeline...")
try:
pipeline = LiveVASAPipeline(
cfg_path=DEFAULT_CFG_PATH,
motion_mean_std_path=DEFAULT_MOTION_MEAN_STD_PATH
)
print("MoDA pipeline initialized successfully.")
except Exception as e:
print(f"Error initializing pipeline: {e}")
pipeline = None
# Invert the emo_map for easy lookup from the dropdown value
emo_name_to_id = {v: k for k, v in emo_map.items()}
# --- Core Generation Function ---
@spaces.GPU(duration=120)
def generate_motion(source_image_path, driving_audio_path, emotion_name, cfg_scale, progress=gr.Progress(track_tqdm=True)):
"""
The main function that takes Gradio inputs and generates the talking head video.
"""
if pipeline is None:
raise gr.Error("Pipeline failed to initialize. Check the console logs for details.")
if source_image_path is None:
raise gr.Error("Please upload a source image.")
if driving_audio_path is None:
raise gr.Error("Please upload a driving audio file.")
start_time = time.time()
# Ensure audio is in WAV format
wav_audio_path = ensure_wav_format(driving_audio_path)
temp_wav_created = wav_audio_path != driving_audio_path
# Create a unique subdirectory for this run
timestamp = time.strftime("%Y%m%d-%H%M%S")
run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
os.makedirs(run_output_dir, exist_ok=True)
# Get emotion ID from its name
emotion_id = emo_name_to_id.get(emotion_name, 8) # Default to 'None' (ID 8) if not found
print(f"Starting generation with the following parameters:")
print(f" Source Image: {source_image_path}")
print(f" Driving Audio (original): {driving_audio_path}")
print(f" Driving Audio (WAV): {wav_audio_path}")
print(f" Emotion: {emotion_name} (ID: {emotion_id})")
print(f" CFG Scale: {cfg_scale}")
try:
# Call the pipeline's inference method with the WAV audio
result_video_path = pipeline.driven_sample(
image_path=source_image_path,
audio_path=wav_audio_path,
cfg_scale=float(cfg_scale),
emo=emotion_id,
save_dir=".",
smooth=False, # Smoothing can be slow, disable for a faster demo
silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
)
except Exception as e:
print(f"An error occurred during video generation: {e}")
import traceback
traceback.print_exc()
raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.")
finally:
# Clean up temporary WAV file if created
if temp_wav_created and os.path.exists(wav_audio_path):
try:
os.remove(wav_audio_path)
print(f"Cleaned up temporary WAV file: {wav_audio_path}")
except Exception as e:
print(f"Warning: Could not delete temporary file {wav_audio_path}: {e}")
end_time = time.time()
processing_time = end_time - start_time
result_video_path = Path(result_video_path)
final_path = result_video_path.with_name(f"final_{result_video_path.stem}{result_video_path.suffix}")
print(f"Video generated successfully at: {final_path}")
print(f"Processing time: {processing_time:.2f} seconds.")
return final_path
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px !important; margin: 0 auto !important}") as demo:
gr.HTML(
"""
<div align='center'>
<h1>MoDA: Multi-modal Diffusion Architecture for Talking Head Generation</h1>
<p style="display:flex">
<a href='https://lixinyyang.github.io/MoDA.github.io/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://arxiv.org/abs/2507.03256'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href='https://github.com/lixinyyang/MoDA/'><img src='https://img.shields.io/badge/Code-Github-green'></a>
</p>
</div>
"""
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
with gr.Row():
source_image = gr.Image(label="Source Image", type="filepath", value="src/examples/reference_images/7.jpg")
with gr.Row():
driving_audio = gr.Audio(
label="Driving Audio",
type="filepath",
value="src/examples/driving_audios/5.wav"
)
with gr.Row():
emotion_dropdown = gr.Dropdown(
label="Emotion",
choices=list(emo_map.values()),
value="None"
)
with gr.Row():
cfg_slider = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=3.0,
step=0.05,
value=1.2
)
submit_button = gr.Button("Generate Video", variant="primary")
with gr.Column(scale=1):
output_video = gr.Video(label="Generated Video")
gr.Markdown(
"""
---
### **Disclaimer**
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using this generative model.
"""
)
submit_button.click(
fn=generate_motion,
inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider],
outputs=output_video
)
if __name__ == "__main__":
demo.launch(share=True) |