multimodalart's picture
Upload 8 files
9c72a9c verified
import torch
from diffusers.models.attention_processor import Attention
from .attention import HunyuanVideoAttnSparseProcessor2_0
from .sparse_transformer import replace_sparse_forward
from ...attn_mask import MaskMap
def replace_hunyuan_attention(
pipe,
height,
width,
num_frames,
dense_layers=0,
dense_timesteps=0,
decay_factor=1.0,
sparsity_type="radial",
):
num_frames = 1 + (num_frames - 1) // (pipe.vae_scale_factor_temporal)
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size
frame_size = int(height // mod_value) * int(width // mod_value)
AttnModule = HunyuanVideoAttnSparseProcessor2_0
AttnModule.dense_block = dense_layers
AttnModule.dense_timestep = dense_timesteps
AttnModule.mask_map = MaskMap(video_token_num=frame_size * num_frames, num_frame=num_frames)
AttnModule.decay_factor = decay_factor
AttnModule.sparsity_type = sparsity_type
print(f"Replacing Hunyuan attention with {sparsity_type} attention")
print(f"video token num: {AttnModule.mask_map.video_token_num}, num frames: {num_frames}")
print(f"dense layers: {dense_layers}, dense timesteps: {dense_timesteps}, decay factor: {decay_factor}")
replace_sparse_forward()
for layer_idx, m in enumerate(pipe.transformer.transformer_blocks):
m.attn.processor.layer_idx = layer_idx
for layer_idx, m in enumerate(pipe.transformer.single_transformer_blocks):
m.attn.processor.layer_idx = layer_idx + 20
for _, m in pipe.transformer.named_modules():
# if isinstance(m, Attention):
# # print all of the attr
# import pdb; pdb.set_trace()
# print(f"attr: {m.__dict__}")
if isinstance(m, Attention) and hasattr(m.processor, "layer_idx"):
layer_idx = m.processor.layer_idx
m.set_processor(AttnModule(layer_idx))