Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from typing import Any, Dict, Optional, Tuple, Union, List, Callable | |
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoSingleTransformerBlock, HunyuanVideoTransformerBlock, HunyuanVideoTransformer3DModel | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers import HunyuanVideoPipeline | |
from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers, logging, is_torch_xla_available | |
logger = logging.get_logger(__name__) | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput | |
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps | |
import numpy as np | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
DEFAULT_PROMPT_TEMPLATE = { | |
"template": ( | |
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: " | |
"1. The main content and theme of the video." | |
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." | |
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." | |
"4. background environment, light, style and atmosphere." | |
"5. camera angles, movements, and transitions used in the video:<|eot_id|>" | |
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" | |
), | |
"crop_start": 95, | |
} | |
class HunyuanVideoSingleTransformerBlockSparse(HunyuanVideoSingleTransformerBlock): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
timestep: Optional[torch.Tensor] = None, | |
numeral_timestep: Optional[torch.Tensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
text_seq_length = encoder_hidden_states.shape[1] | |
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
residual = hidden_states | |
# 1. Input normalization | |
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
norm_hidden_states, norm_encoder_hidden_states = ( | |
norm_hidden_states[:, :-text_seq_length, :], | |
norm_hidden_states[:, -text_seq_length:, :], | |
) | |
# 2. Attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
timestep=timestep, | |
numeral_timestep=numeral_timestep, | |
) | |
attn_output = torch.cat([attn_output, context_attn_output], dim=1) | |
# 3. Modulation and residual connection | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states) | |
hidden_states = hidden_states + residual | |
hidden_states, encoder_hidden_states = ( | |
hidden_states[:, :-text_seq_length, :], | |
hidden_states[:, -text_seq_length:, :], | |
) | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoTransformerBlockSparse(HunyuanVideoTransformerBlock): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
timestep: Optional[torch.Tensor] = None, | |
numeral_timestep: Optional[torch.Tensor] = None, | |
*args, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# 1. Input normalization | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
# 2. Joint attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=freqs_cis, | |
timestep=timestep, | |
numeral_timestep=numeral_timestep, | |
) | |
# 3. Modulation and residual connection | |
hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1) | |
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
# 4. Feed-forward | |
ff_output = self.ff(norm_hidden_states) | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoTransformer3DModelSparse(HunyuanVideoTransformer3DModel): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
encoder_hidden_states: torch.Tensor, | |
encoder_attention_mask: torch.Tensor, | |
pooled_projections: torch.Tensor, | |
guidance: torch.Tensor = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
numeral_timestep: Optional[torch.Tensor] = None, | |
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
if attention_kwargs is not None: | |
attention_kwargs = attention_kwargs.copy() | |
lora_scale = attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p, p_t = self.config.patch_size, self.config.patch_size_t | |
post_patch_num_frames = num_frames // p_t | |
post_patch_height = height // p | |
post_patch_width = width // p | |
first_frame_num_tokens = 1 * post_patch_height * post_patch_width | |
# 1. RoPE | |
image_rotary_emb = self.rope(hidden_states) | |
# 2. Conditional embeddings | |
temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance) | |
hidden_states = self.x_embedder(hidden_states) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask) | |
# 3. Attention mask preparation | |
latent_sequence_length = hidden_states.shape[1] | |
condition_sequence_length = encoder_hidden_states.shape[1] | |
sequence_length = latent_sequence_length + condition_sequence_length | |
attention_mask = torch.ones( | |
batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool | |
) # [B, N] | |
effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,] | |
effective_sequence_length = latent_sequence_length + effective_condition_sequence_length | |
indices = torch.arange(sequence_length, device=hidden_states.device).unsqueeze(0) # [1, N] | |
mask_indices = indices >= effective_sequence_length.unsqueeze(1) # [B, N] | |
attention_mask = attention_mask.masked_fill(mask_indices, False) | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # [B, 1, 1, N] | |
# 4. Transformer blocks | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
for block in self.transformer_blocks: | |
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
timestep, | |
numeral_timestep, | |
token_replace_emb, | |
first_frame_num_tokens, | |
) | |
for block in self.single_transformer_blocks: | |
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( | |
block, | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
timestep, | |
numeral_timestep, | |
token_replace_emb, | |
first_frame_num_tokens, | |
) | |
else: | |
for block in self.transformer_blocks: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
timestep, | |
numeral_timestep, | |
token_replace_emb, | |
first_frame_num_tokens, | |
) | |
for block in self.single_transformer_blocks: | |
hidden_states, encoder_hidden_states = block( | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
attention_mask, | |
image_rotary_emb, | |
timestep, | |
numeral_timestep, | |
token_replace_emb, | |
first_frame_num_tokens, | |
) | |
# 5. Output projection | |
hidden_states = self.norm_out(hidden_states, temb) | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape( | |
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p | |
) | |
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7) | |
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (hidden_states,) | |
return Transformer2DModelOutput(sample=hidden_states) | |
class HunyuanVideoPipelineSparse(HunyuanVideoPipeline): | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Union[str, List[str]] = None, | |
negative_prompt: Union[str, List[str]] = None, | |
negative_prompt_2: Union[str, List[str]] = None, | |
height: int = 720, | |
width: int = 1280, | |
num_frames: int = 129, | |
num_inference_steps: int = 50, | |
sigmas: List[float] = None, | |
true_cfg_scale: float = 1.0, | |
guidance_scale: float = 6.0, | |
num_videos_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
prompt_attention_mask: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, | |
max_sequence_length: int = 256, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
will be used instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is | |
not greater than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. | |
height (`int`, defaults to `720`): | |
The height in pixels of the generated image. | |
width (`int`, defaults to `1280`): | |
The width in pixels of the generated image. | |
num_frames (`int`, defaults to `129`): | |
The number of frames in the generated video. | |
num_inference_steps (`int`, defaults to `50`): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
true_cfg_scale (`float`, *optional*, defaults to 1.0): | |
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. | |
guidance_scale (`float`, defaults to `6.0`): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. Note that the only available HunyuanVideo model is | |
CFG-distilled, which means that traditional guidance between unconditional and conditional latent is | |
not applied. | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple. | |
attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~HunyuanVideoPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned | |
where the first element is a list with the generated images and the second element is a list of `bool`s | |
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. | |
""" | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
prompt_template, | |
) | |
has_neg_prompt = negative_prompt is not None or ( | |
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
) | |
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._current_timestep = None | |
self._interrupt = False | |
device = self._execution_device | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# 3. Encode input prompt | |
transformer_dtype = self.transformer.dtype | |
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_template=prompt_template, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
device=device, | |
max_sequence_length=max_sequence_length, | |
) | |
prompt_embeds = prompt_embeds.to(transformer_dtype) | |
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) | |
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) | |
if do_true_cfg: | |
negative_prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_attention_mask = self.encode_prompt( | |
prompt=negative_prompt, | |
prompt_2=negative_prompt_2, | |
prompt_template=prompt_template, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
prompt_attention_mask=negative_prompt_attention_mask, | |
device=device, | |
max_sequence_length=max_sequence_length, | |
) | |
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype) | |
negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype) | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype) | |
# 4. Prepare timesteps | |
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas) | |
# 5. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
num_frames, | |
torch.float32, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare guidance condition | |
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0 | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
latent_model_input = latents.to(transformer_dtype) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
encoder_attention_mask=prompt_attention_mask, | |
pooled_projections=pooled_prompt_embeds, | |
guidance=guidance, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
numeral_timestep=i, | |
)[0] | |
if do_true_cfg: | |
neg_noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=negative_prompt_embeds, | |
encoder_attention_mask=negative_prompt_attention_mask, | |
pooled_projections=negative_pooled_prompt_embeds, | |
guidance=guidance, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
numeral_timestep=i, | |
)[0] | |
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
self._current_timestep = None | |
if not output_type == "latent": | |
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor | |
video = self.vae.decode(latents, return_dict=False)[0] | |
video = self.video_processor.postprocess_video(video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return HunyuanVideoPipelineOutput(frames=video) | |
def replace_sparse_forward(): | |
HunyuanVideoSingleTransformerBlock.forward = HunyuanVideoSingleTransformerBlockSparse.forward | |
HunyuanVideoTransformerBlock.forward = HunyuanVideoTransformerBlockSparse.forward | |
HunyuanVideoTransformer3DModel.forward = HunyuanVideoTransformer3DModelSparse.forward | |
HunyuanVideoPipeline.__call__ = HunyuanVideoPipelineSparse.__call__ | |