Spaces:
Sleeping
Sleeping
| import torch | |
| import torchaudio | |
| import gradio as gr | |
| from PIL import Image | |
| import torchvision.transforms as transforms | |
| import torchaudio.transforms as T | |
| from torch import nn, optim | |
| import torchvision.transforms as transforms | |
| from torch.utils.data import Dataset, DataLoader | |
| from PIL import Image | |
| import os | |
| # Set device to 'cpu' or 'cuda' if available | |
| device = torch.device('cpu') | |
| # Parameters | |
| sample_rate = 44100 # 44.1kHz stereo sounds | |
| n_fft = 4096 # FFT size | |
| hop_length = 2048 # Hop length for STFT | |
| duration = 5 # Duration of the sound files (5 seconds) | |
| n_channels = 2 # Stereo sound | |
| output_time_frames = duration * sample_rate // hop_length # Number of time frames in the spectrogram | |
| stft_transform = T.Spectrogram(n_fft=n_fft, hop_length=hop_length, win_length=n_fft) | |
| image_transform = transforms.Compose([ | |
| transforms.Resize((256, 256)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # Normalize to [-1, 1] | |
| ]) | |
| # Image Encoder (for the Generator) | |
| class ImageEncoder(nn.Module): | |
| def __init__(self): | |
| super(ImageEncoder, self).__init__() | |
| self.encoder = nn.Sequential( | |
| nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(), | |
| nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(128), | |
| nn.ReLU(), | |
| nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(256), | |
| nn.ReLU(), | |
| nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(512), | |
| nn.ReLU() | |
| ) | |
| self.fc = nn.Linear(512 * 16 * 16, 512) | |
| def forward(self, x): | |
| x = self.encoder(x) | |
| x = x.view(x.size(0), -1) | |
| return self.fc(x) | |
| # Sound Decoder (for the Generator) | |
| class SoundDecoder(nn.Module): | |
| def __init__(self, output_time_frames): | |
| super(SoundDecoder, self).__init__() | |
| self.fc = nn.Linear(512, 512 * 8 * 8) | |
| self.decoder = nn.Sequential( | |
| nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(256), | |
| nn.ReLU(), | |
| nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(128), | |
| nn.ReLU(), | |
| nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(), | |
| nn.ConvTranspose2d(64, n_channels, kernel_size=4, stride=2, padding=1), | |
| ) | |
| # Modify the upsample to exactly match the real spectrogram size (108 time frames) | |
| self.upsample = nn.Upsample(size=(n_fft // 2 + 1, 108), mode='bilinear', align_corners=True) | |
| def forward(self, x): | |
| x = self.fc(x) | |
| x = x.view(x.size(0), 512, 8, 8) | |
| x = self.decoder(x) | |
| x = self.upsample(x) | |
| # Debugging shape | |
| print(f'Generated spectrogram shape: {x.shape}') | |
| return x | |
| # Generator model | |
| class Generator(nn.Module): | |
| def __init__(self, output_time_frames): | |
| super(Generator, self).__init__() | |
| self.encoder = ImageEncoder() | |
| self.decoder = SoundDecoder(output_time_frames) | |
| def forward(self, img): | |
| # Debugging: Image encoder | |
| encoded_features = self.encoder(img) | |
| print(f"Encoded features shape (from Image Encoder): {encoded_features.shape}") | |
| # Debugging: Sound decoder | |
| generated_spectrogram = self.decoder(encoded_features) | |
| print(f"Generated spectrogram shape (from Sound Decoder): {generated_spectrogram.shape}") | |
| return generated_spectrogram | |
| # Function to generate and save audio from a test image using the pre-trained GAN model | |
| def test_model(generator, test_img_path, output_audio_path, device): | |
| # Load and preprocess test image | |
| test_img = Image.open(test_img_path).convert('RGB') | |
| test_img = image_transform(test_img).unsqueeze(0).to(device) # Add batch dimension | |
| # Generate sound spectrogram from the image | |
| with torch.no_grad(): # Disable gradient calculation for inference | |
| generated_spectrogram = generator(test_img) | |
| # Debugging: Check generated spectrogram shape | |
| print(f"Generated spectrogram shape: {generated_spectrogram.shape}") | |
| # Convert the generated spectrogram to audio | |
| generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu()) # Remove batch dimension | |
| print(f"Generated audio saved to {output_audio_path}") | |
| # Load the pre-trained GAN model | |
| def load_gan_model(generator, model_path, device): | |
| generator.load_state_dict(torch.load(model_path, map_location=device)) | |
| generator.eval() # Set the model to evaluation mode | |
| return generator | |
| def magnitude_to_complex_spectrogram(magnitude_spectrogram): | |
| # Create a zero-phase tensor with the same shape as the magnitude spectrogram | |
| zero_phase = torch.zeros_like(magnitude_spectrogram) | |
| # Create a complex-valued spectrogram using the magnitude and zero phase | |
| complex_spectrogram = torch.complex(magnitude_spectrogram, zero_phase) | |
| return complex_spectrogram | |
| def spectrogram_to_audio(magnitude_spectrogram): | |
| # Convert magnitude-only spectrogram to complex format | |
| complex_spectrogram = magnitude_to_complex_spectrogram(magnitude_spectrogram) | |
| # Provide a rectangular window to suppress the warning | |
| window = torch.ones(n_fft, device=complex_spectrogram.device) | |
| # Inverse STFT to convert the spectrogram back to audio | |
| audio = torch.istft(complex_spectrogram, n_fft=n_fft, hop_length=hop_length, window=window) | |
| return audio | |
| import numpy as np | |
| def generate_audio_from_image(image): | |
| if image is None: | |
| raise ValueError("The uploaded image is 'None'. Please check the Gradio input.") | |
| # Ensure the image is in the right format | |
| print(f"Image received: {type(image)}") # Debugging: Check if image is received | |
| test_img = image_transform(image).unsqueeze(0).to(device) # Preprocess image | |
| # Generate sound spectrogram from the image using the loaded generator | |
| with torch.no_grad(): | |
| generated_spectrogram = generator(test_img) | |
| # Convert the generated spectrogram to audio | |
| generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu()) | |
| # Ensure the audio is a NumPy array and properly formatted | |
| generated_audio = generated_audio.numpy() | |
| # Normalize the audio to fit between -1 and 1 for proper playback | |
| max_value = np.abs(generated_audio).max() | |
| if max_value > 0: | |
| generated_audio = generated_audio / max_value | |
| # Convert to the required format (e.g., float32) | |
| generated_audio = generated_audio.astype(np.float32) | |
| return generated_audio, sample_rate | |
| # Gradio Interface | |
| def main(): | |
| global generator # Declare the generator object globally | |
| # Instantiate your Generator model | |
| generator = Generator(output_time_frames).to(device) | |
| # Load the pre-trained model | |
| model_path = './gan_model.pth' # Ensure the model is in the correct relative path | |
| generator = load_gan_model(generator, model_path, device) | |
| # Gradio interface: allow users to upload an image and generate audio | |
| iface = gr.Interface(fn=generate_audio_from_image, | |
| inputs=gr.Image(type="pil"), # PIL type image | |
| outputs=gr.Audio(type="numpy", label="Generated Audio")) | |
| iface.launch() | |
| if __name__ == "__main__": | |
| main() | |