Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -139,15 +139,20 @@ def magnitude_to_complex_spectrogram(magnitude_spectrogram):
|
|
139 |
return complex_spectrogram
|
140 |
|
141 |
def spectrogram_to_audio(magnitude_spectrogram):
|
142 |
-
# Convert magnitude spectrogram to complex
|
143 |
complex_spectrogram = magnitude_to_complex_spectrogram(magnitude_spectrogram)
|
144 |
|
|
|
|
|
|
|
145 |
# Inverse STFT to convert the spectrogram back to audio
|
146 |
-
audio = torch.istft(complex_spectrogram, n_fft=n_fft, hop_length=hop_length)
|
147 |
-
|
148 |
return audio
|
149 |
|
150 |
|
|
|
|
|
151 |
def generate_audio_from_image(image):
|
152 |
if image is None:
|
153 |
raise ValueError("The uploaded image is 'None'. Please check the Gradio input.")
|
@@ -163,8 +168,19 @@ def generate_audio_from_image(image):
|
|
163 |
# Convert the generated spectrogram to audio
|
164 |
generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu())
|
165 |
|
166 |
-
#
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
|
170 |
# Gradio Interface
|
|
|
139 |
return complex_spectrogram
|
140 |
|
141 |
def spectrogram_to_audio(magnitude_spectrogram):
|
142 |
+
# Convert magnitude-only spectrogram to complex format
|
143 |
complex_spectrogram = magnitude_to_complex_spectrogram(magnitude_spectrogram)
|
144 |
|
145 |
+
# Provide a rectangular window to suppress the warning
|
146 |
+
window = torch.ones(n_fft, device=complex_spectrogram.device)
|
147 |
+
|
148 |
# Inverse STFT to convert the spectrogram back to audio
|
149 |
+
audio = torch.istft(complex_spectrogram, n_fft=n_fft, hop_length=hop_length, window=window)
|
150 |
+
|
151 |
return audio
|
152 |
|
153 |
|
154 |
+
import numpy as np
|
155 |
+
|
156 |
def generate_audio_from_image(image):
|
157 |
if image is None:
|
158 |
raise ValueError("The uploaded image is 'None'. Please check the Gradio input.")
|
|
|
168 |
# Convert the generated spectrogram to audio
|
169 |
generated_audio = spectrogram_to_audio(generated_spectrogram.squeeze(0).cpu())
|
170 |
|
171 |
+
# Ensure the audio is a NumPy array and properly formatted
|
172 |
+
generated_audio = generated_audio.numpy()
|
173 |
+
|
174 |
+
# Normalize the audio to fit between -1 and 1 for proper playback
|
175 |
+
max_value = np.abs(generated_audio).max()
|
176 |
+
if max_value > 0:
|
177 |
+
generated_audio = generated_audio / max_value
|
178 |
+
|
179 |
+
# Convert to the required format (e.g., float32)
|
180 |
+
generated_audio = generated_audio.astype(np.float32)
|
181 |
+
|
182 |
+
return generated_audio, sample_rate
|
183 |
+
|
184 |
|
185 |
|
186 |
# Gradio Interface
|