pcs / app.py
smgc's picture
Create app.py
8391cb0 verified
raw
history blame
8.97 kB
import os
import time
import json
import grpc
import asyncio
from typing import List, Optional
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
from dotenv import load_dotenv
from grpc_tools import protoc
import re
# 加载环境变量
load_dotenv()
# 配置类
class Config:
def __init__(self):
self.API_PREFIX = os.getenv('API_PREFIX', '/')
self.API_KEY = os.getenv('API_KEY', '')
self.MAX_RETRY_COUNT = int(os.getenv('MAX_RETRY_COUNT', 3))
self.RETRY_DELAY = int(os.getenv('RETRY_DELAY', 5000))
self.COMMON_GRPC = 'runtime-native-io-vertex-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
self.COMMON_PROTO = 'protos/VertexInferenceService.proto'
self.GPT_GRPC = 'runtime-native-io-gpt-inference-grpc-service-lmuw6mcn3q-ul.a.run.app'
self.GPT_PROTO = 'protos/GPTInferenceService.proto'
self.PORT = int(os.getenv('PORT', 8787))
self.SUPPORTED_MODELS = [
"gpt-4o-mini", "gpt-4o", "gpt-4-turbo", "gpt-4", "gpt-3.5-turbo",
"claude-3-sonnet@20240229", "claude-3-opus@20240229", "claude-3-haiku@20240307",
"claude-3-5-sonnet@20240620", "gemini-1.5-flash", "gemini-1.5-pro",
"chat-bison", "codechat-bison"
]
def is_valid_model(self, model):
regex_input = r'^(claude-3-(5-sonnet|haiku|sonnet|opus))-(\d{8})$'
match_input = re.match(regex_input, model)
normalized_model = f"{match_input.group(1)}@{match_input.group(3)}" if match_input else model
return normalized_model in self.SUPPORTED_MODELS
# gRPC处理类
class GRPCHandler:
def __init__(self, proto_file):
self.proto_file = proto_file
self._compile_proto()
self._load_proto()
def _compile_proto(self):
proto_dir = os.path.dirname(self.proto_file)
proto_file = os.path.basename(self.proto_file)
protoc.main((
'',
f'-I{proto_dir}',
f'--python_out=.',
f'--grpc_python_out=.',
os.path.join(proto_dir, proto_file)
))
def _load_proto(self):
module_name = os.path.splitext(os.path.basename(self.proto_file))[0] + '_pb2_grpc'
proto_module = __import__(module_name)
self.stub_class = getattr(proto_module, f"{module_name.split('_')[0]}Stub")
async def grpc_to_pieces(self, model, content, rules, temperature, top_p):
channel = grpc.aio.secure_channel(
config.COMMON_GRPC if not model.startswith('gpt') else config.GPT_GRPC,
grpc.ssl_channel_credentials()
)
stub = self.stub_class(channel)
try:
request = self._build_request(model, content, rules, temperature, top_p)
response = await stub.Predict(request)
return self._process_response(response, model)
except grpc.RpcError as e:
print(f"RPC failed: {e}")
return {"error": str(e)}
finally:
await channel.close()
async def grpc_to_pieces_stream(self, model, content, rules, temperature, top_p):
channel = grpc.aio.secure_channel(
config.COMMON_GRPC if not model.startswith('gpt') else config.GPT_GRPC,
grpc.ssl_channel_credentials()
)
stub = self.stub_class(channel)
try:
request = self._build_request(model, content, rules, temperature, top_p)
async for response in stub.PredictWithStream(request):
result = self._process_stream_response(response, model)
if result:
yield f"data: {json.dumps(result)}\n\n"
except grpc.RpcError as e:
print(f"Stream RPC failed: {e}")
yield f"data: {json.dumps({'error': str(e)})}\n\n"
finally:
await channel.close()
def _build_request(self, model, content, rules, temperature, top_p):
if model.startswith('gpt'):
return self.stub_class.Request(
models=model,
messages=[
{"role": 0, "message": rules},
{"role": 1, "message": content}
],
temperature=temperature or 0.1,
top_p=top_p or 1.0
)
else:
return self.stub_class.Request(
models=model,
args={
"messages": {
"unknown": 1,
"message": content
},
"rules": rules
}
)
def _process_response(self, response, model):
if response.response_code == 200:
if model.startswith('gpt'):
message = response.body.message_warpper.message.message
else:
message = response.args.args.args.message
return chat_completion_with_model(message, model)
return {"error": f"Invalid response code: {response.response_code}"}
def _process_stream_response(self, response, model):
if response.response_code == 204:
return None
elif response.response_code == 200:
if model.startswith('gpt'):
message = response.body.message_warpper.message.message
else:
message = response.args.args.args.message
return chat_completion_stream_with_model(message, model)
else:
return {"error": f"Invalid response code: {response.response_code}"}
# 工具函数
def messages_process(messages):
rules = ''
message = ''
for msg in messages:
role = msg.role
content = msg.content
if isinstance(content, list):
content = ''.join([item.get('text', '') for item in content if item.get('text')])
if role == 'system':
rules += f"system:{content};\r\n"
elif role in ['user', 'assistant']:
message += f"{role}:{content};\r\n"
return rules, message
def chat_completion_with_model(message: str, model: str):
return {
"id": "Chat-Nekohy",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0,
},
"choices": [
{
"message": {
"content": message,
"role": "assistant",
},
"index": 0,
},
],
}
def chat_completion_stream_with_model(text: str, model: str):
return {
"id": "chatcmpl-Nekohy",
"object": "chat.completion.chunk",
"created": 0,
"model": model,
"choices": [
{
"index": 0,
"delta": {
"content": text,
},
"finish_reason": None,
},
],
}
# 初始化配置
config = Config()
# 初始化 FastAPI 应用
app = FastAPI()
# 定义请求模型
class ChatMessage(BaseModel):
role: str
content: str
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
stream: Optional[bool] = False
temperature: Optional[float] = None
top_p: Optional[float] = None
# 路由定义
@app.get("/")
async def root():
return {"message": "API 服务运行中~"}
@app.get("/ping")
async def ping():
return {"message": "pong"}
@app.get(config.API_PREFIX + "/v1/models")
async def list_models():
with open('cloud_model.json', 'r') as f:
cloud_models = json.load(f)
models = [
{"id": model["unique"], "object": "model", "owned_by": "pieces-os"}
for model in cloud_models["iterable"]
]
return JSONResponse({
"object": "list",
"data": models
})
@app.post(config.API_PREFIX + "/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
if not config.is_valid_model(request.model):
raise HTTPException(status_code=404, detail=f"Model '{request.model}' does not exist")
rules, content = messages_process(request.messages)
grpc_handler = GRPCHandler(config.COMMON_PROTO if not request.model.startswith('gpt') else config.GPT_PROTO)
if request.stream:
return StreamingResponse(
grpc_handler.grpc_to_pieces_stream(
request.model, content, rules, request.temperature, request.top_p
),
media_type="text/event-stream"
)
else:
response = await grpc_handler.grpc_to_pieces(
request.model, content, rules, request.temperature, request.top_p
)
return JSONResponse(content=response)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=config.PORT)