ChatData / lib /private_kb.py
mpsk's picture
add parse and private knowledge base
04f0bde
raw
history blame
4.81 kB
import pandas as pd
import hashlib
import requests
from typing import List
from datetime import datetime
from langchain.schema.embeddings import Embeddings
from streamlit.runtime.uploaded_file_manager import UploadedFile
from clickhouse_connect import get_client
from multiprocessing.pool import ThreadPool
from langchain.vectorstores.myscale import MyScaleWithoutJSON, MyScaleSettings
parser_url = "https://api.unstructured.io/general/v0/general"
def parse_files(api_key, user_id, files: List[UploadedFile], collection="default"):
def parse_file(file: UploadedFile):
headers = {
"accept": "application/json",
"unstructured-api-key": api_key,
}
data = {"strategy": "auto", "ocr_languages": ["eng"]}
file_hash = hashlib.sha256(file.read()).hexdigest()
file_data = {"files": (file.name, file.getvalue(), file.type)}
response = requests.post(
parser_url, headers=headers, data=data, files=file_data
)
json_response = response.json()
if response.status_code != 200:
raise ValueError(str(json_response))
texts = [
{
"text": t["text"],
"file_name": t["metadata"]["filename"],
"entity_id": hashlib.sha256((file_hash + t["text"]).encode()).hexdigest(),
"user_id": user_id,
"collection_id": collection,
"created_by": datetime.now(),
}
for t in json_response
if t["type"] == "NarrativeText" and len(t["text"].split(" ")) > 10
]
return texts
with ThreadPool(8) as p:
rows = []
for r in map(parse_file, files):
rows.extend(r)
return rows
def extract_embedding(embeddings: Embeddings, texts):
if len(texts) > 0:
embs = embeddings.embed_documents([t["text"] for _, t in enumerate(texts)])
for i, _ in enumerate(texts):
texts[i]["vector"] = embs[i]
return texts
raise ValueError("No texts extracted!")
class PrivateKnowledgeBase:
def __init__(
self,
host,
port,
username,
password,
embedding: Embeddings,
parser_api_key,
db="chat",
kb_table="private_kb",
) -> None:
super().__init__()
schema_ = f"""
CREATE TABLE IF NOT EXISTS {db}.{kb_table}(
entity_id String,
file_name String,
text String,
user_id String,
collection_id String,
created_by DateTime,
vector Array(Float32),
CONSTRAINT cons_vec_len CHECK length(vector) = 768,
VECTOR INDEX vidx vector TYPE MSTG('metric_type=Cosine')
) ENGINE = ReplacingMergeTree ORDER BY entity_id
"""
config = MyScaleSettings(
host=host,
port=port,
username=username,
password=password,
database=db,
table=kb_table,
)
client = get_client(
host=config.host,
port=config.port,
username=config.username,
password=config.password,
)
client.command("SET allow_experimental_object_type=1")
client.command(schema_)
self.parser_api_key = parser_api_key
self.vstore = MyScaleWithoutJSON(
embedding=embedding,
config=config,
must_have_cols=["file_name", "text", "create_by"],
)
self.retriever = self.vstore.as_retriever()
def list_files(self, user_id):
query = f"""
SELECT DISTINCT file_name FROM {self.vstore.config.database}.{self.vstore.config.table}
WHERE user_id = '{user_id}'
"""
return [r for r in self.vstore.client.query(query).named_results()]
def add_by_file(
self, user_id, files: List[UploadedFile], collection="default", **kwargs
):
data = parse_files(self.parser_api_key, user_id, files, collection=collection)
data = extract_embedding(self.vstore.embeddings, data)
self.vstore.client.insert_df(
self.vstore.config.table,
pd.DataFrame(data),
database=self.vstore.config.database,
)
def clear(self, user_id):
self.vstore.client.command(
f"DELETE FROM {self.vstore.config.database}.{self.vstore.config.table} "
f"WHERE user_id='{user_id}'"
)
def _get_relevant_documents(self, query, *args, **kwargs):
return self.retriever._get_relevant_documents(query, *args, **kwargs)
async def _aget_relevant_documents(self, *args, **kwargs):
return self.retriever._aget_relevant_documents(*args, **kwargs)