nadjibtabanii's picture
Update app.py
ea4e188 verified
from flask import Flask, request, jsonify, send_file
import os
import base64
import json
import uuid
import tempfile
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional
import cv2
import numpy as np
from PIL import Image
import torch
from transformers import pipeline
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip
import requests
from io import BytesIO
import threading
import time
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
class HuggingFaceVideoGenerator:
def __init__(self, huggingface_token: Optional[str] = None):
"""
Initialize the Hugging Face Video Generator
Args:
huggingface_token: Optional Hugging Face API token
"""
self.hf_token = huggingface_token
self.jobs = {} # Store processing jobs
if huggingface_token:
os.environ["HUGGINGFACE_HUB_TOKEN"] = huggingface_token
# Initialize Hugging Face pipelines
self._init_pipelines()
# Create output directory
self.output_dir = Path("generated_videos")
self.output_dir.mkdir(exist_ok=True)
def _init_pipelines(self):
"""Initialize Hugging Face pipelines"""
try:
# Text-to-Speech pipeline
self.tts_pipeline = pipeline(
"text-to-speech",
model="microsoft/speecht5_tts",
device=0 if torch.cuda.is_available() else -1
)
logger.info("TTS pipeline initialized")
except Exception as e:
logger.warning(f"Could not initialize TTS pipeline: {e}")
self.tts_pipeline = None
try:
# Text-to-Image pipeline (for generating images from text)
self.text_to_image = pipeline(
"text-to-image",
model="runwayml/stable-diffusion-v1-5",
device=0 if torch.cuda.is_available() else -1
)
logger.info("Text-to-Image pipeline initialized")
except Exception as e:
logger.warning(f"Could not initialize Text-to-Image pipeline: {e}")
self.text_to_image = None
def download_image_from_url(self, url: str) -> np.ndarray:
"""Download and process image from URL"""
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to OpenCV format
opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
return opencv_image
except Exception as e:
logger.error(f"Error downloading image from {url}: {e}")
raise
def decode_base64_image(self, base64_string: str) -> np.ndarray:
"""Decode base64 image string"""
try:
# Remove data URL prefix if present
if ',' in base64_string:
base64_string = base64_string.split(',')[1]
image_data = base64.b64decode(base64_string)
image = Image.open(BytesIO(image_data))
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Convert to OpenCV format
opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
return opencv_image
except Exception as e:
logger.error(f"Error decoding base64 image: {e}")
raise
def generate_image_from_text(self, prompt: str) -> np.ndarray:
"""Generate image from text prompt using Hugging Face"""
if not self.text_to_image:
raise ValueError("Text-to-Image pipeline not available")
try:
logger.info(f"Generating image from prompt: {prompt}")
result = self.text_to_image(prompt)
# Convert PIL image to OpenCV format
if hasattr(result, 'images'):
pil_image = result.images[0]
else:
pil_image = result
opencv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return opencv_image
except Exception as e:
logger.error(f"Error generating image from text: {e}")
raise
def process_images_data(self, images_data: List[Dict]) -> List[np.ndarray]:
"""Process various image data formats"""
processed_images = []
for img_data in images_data:
try:
if 'url' in img_data:
# Download from URL
image = self.download_image_from_url(img_data['url'])
processed_images.append(image)
elif 'base64' in img_data:
# Decode base64
image = self.decode_base64_image(img_data['base64'])
processed_images.append(image)
elif 'text_prompt' in img_data and self.text_to_image:
# Generate from text
image = self.generate_image_from_text(img_data['text_prompt'])
processed_images.append(image)
else:
logger.warning(f"Unsupported image data format: {img_data.keys()}")
except Exception as e:
logger.error(f"Error processing image data: {e}")
continue
return processed_images
def create_video_from_images(
self,
images: List[np.ndarray],
output_path: str,
fps: int = 30,
duration_per_image: float = 2.0,
transition_duration: float = 0.5,
resolution: tuple = (1920, 1080),
transition_type: str = "fade"
) -> str:
"""Create video from processed images"""
logger.info(f"Creating video from {len(images)} images")
if not images:
raise ValueError("No images provided")
# Create clips from images
clips = []
for i, img in enumerate(images):
# Resize image
img_resized = cv2.resize(img, resolution)
# Convert BGR to RGB for moviepy
img_rgb = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB)
# Create temporary file for image
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as f:
Image.fromarray(img_rgb).save(f.name)
temp_img_path = f.name
# Create image clip
clip = ImageClip(temp_img_path, duration=duration_per_image)
# Add transition effect
if transition_type == "fade" and i > 0:
clip = clip.fadein(transition_duration)
if i < len(images) - 1:
clip = clip.fadeout(transition_duration)
clips.append(clip)
# Clean up temp file
try:
os.unlink(temp_img_path)
except:
pass
# Concatenate clips
if transition_type == "fade" and len(clips) > 1:
# Overlap clips for smooth transitions
final_clips = [clips[0]]
for clip in clips[1:]:
final_clips.append(clip.set_start(final_clips[-1].end - transition_duration))
final_video = CompositeVideoClip(final_clips)
else:
final_video = concatenate_videoclips(clips)
# Write video
final_video.write_videofile(
output_path,
fps=fps,
codec='libx264',
audio_codec='aac' if hasattr(final_video, 'audio') and final_video.audio else None
)
# Clean up
final_video.close()
for clip in clips:
clip.close()
logger.info(f"Video created: {output_path}")
return output_path
def generate_tts_audio(self, text: str) -> str:
"""Generate TTS audio"""
if not self.tts_pipeline:
raise ValueError("TTS pipeline not available")
logger.info("Generating TTS audio")
try:
# Generate audio
audio_data = self.tts_pipeline(text)
# Save to temporary file
import soundfile as sf
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, audio_data["audio"], audio_data["sampling_rate"])
return f.name
except Exception as e:
logger.error(f"Error generating TTS: {e}")
raise
def add_audio_to_video(
self,
video_path: str,
audio_path: str,
output_path: str,
audio_volume: float = 1.0
) -> str:
"""Add audio to video"""
logger.info("Adding audio to video")
try:
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
# Adjust volume
if audio_volume != 1.0:
audio = audio.volumex(audio_volume)
# Match durations
if audio.duration > video.duration:
audio = audio.subclip(0, video.duration)
elif audio.duration < video.duration:
loops = int(video.duration / audio.duration) + 1
audio = audio.loop(loops).subclip(0, video.duration)
# Combine
final_video = video.set_audio(audio)
final_video.write_videofile(output_path, codec='libx264', audio_codec='aac')
# Clean up
video.close()
audio.close()
final_video.close()
return output_path
except Exception as e:
logger.error(f"Error adding audio to video: {e}")
raise
def process_video_request(self, job_id: str, request_data: Dict[str, Any]):
"""Process video generation request in background"""
try:
self.jobs[job_id]['status'] = 'processing'
self.jobs[job_id]['progress'] = 0
# Extract parameters
images_data = request_data.get('images', [])
video_params = request_data.get('video_params', {})
audio_params = request_data.get('audio_params', {})
# Process images
self.jobs[job_id]['progress'] = 20
images = self.process_images_data(images_data)
if not images:
raise ValueError("No valid images processed")
# Create video
self.jobs[job_id]['progress'] = 50
video_output = self.output_dir / f"{job_id}_video.mp4"
self.create_video_from_images(
images=images,
output_path=str(video_output),
fps=video_params.get('fps', 30),
duration_per_image=video_params.get('duration_per_image', 2.0),
transition_duration=video_params.get('transition_duration', 0.5),
resolution=tuple(video_params.get('resolution', [1920, 1080])),
transition_type=video_params.get('transition_type', 'fade')
)
# Add audio if requested
final_output = video_output
if audio_params.get('text') and self.tts_pipeline:
self.jobs[job_id]['progress'] = 80
audio_path = self.generate_tts_audio(audio_params['text'])
final_output = self.output_dir / f"{job_id}_final.mp4"
self.add_audio_to_video(
video_path=str(video_output),
audio_path=audio_path,
output_path=str(final_output),
audio_volume=audio_params.get('volume', 1.0)
)
# Clean up
try:
os.unlink(audio_path)
os.unlink(str(video_output))
except:
pass
# Update job status
self.jobs[job_id]['status'] = 'completed'
self.jobs[job_id]['progress'] = 100
self.jobs[job_id]['output_file'] = str(final_output)
self.jobs[job_id]['download_url'] = f"/download/{job_id}"
logger.info(f"Job {job_id} completed successfully")
except Exception as e:
logger.error(f"Job {job_id} failed: {e}")
self.jobs[job_id]['status'] = 'failed'
self.jobs[job_id]['error'] = str(e)
# Initialize generator
generator = HuggingFaceVideoGenerator(
huggingface_token=os.getenv('HUGGINGFACE_TOKEN')
)
@app.route('/generate_video', methods=['POST'])
def generate_video():
"""Main endpoint to receive data from n8n and generate video"""
try:
data = request.get_json()
if not data:
return jsonify({'error': 'No JSON data provided'}), 400
# Validate required fields
if 'images' not in data or not data['images']:
return jsonify({'error': 'No images data provided'}), 400
# Generate unique job ID
job_id = str(uuid.uuid4())
# Initialize job
generator.jobs[job_id] = {
'status': 'queued',
'progress': 0,
'created_at': time.time()
}
# Start processing in background
thread = threading.Thread(
target=generator.process_video_request,
args=(job_id, data)
)
thread.daemon = True
thread.start()
return jsonify({
'job_id': job_id,
'status': 'queued',
'status_url': f"/status/{job_id}",
'message': 'Video generation started'
})
except Exception as e:
logger.error(f"Error in generate_video: {e}")
return jsonify({'error': str(e)}), 500
@app.route('/status/<job_id>', methods=['GET'])
def get_job_status(job_id):
"""Get job status and progress"""
if job_id not in generator.jobs:
return jsonify({'error': 'Job not found'}), 404
job = generator.jobs[job_id]
response = {
'job_id': job_id,
'status': job['status'],
'progress': job['progress']
}
if job['status'] == 'completed':
response['download_url'] = job.get('download_url')
elif job['status'] == 'failed':
response['error'] = job.get('error')
return jsonify(response)
@app.route('/download/<job_id>', methods=['GET'])
def download_video(job_id):
"""Download generated video"""
if job_id not in generator.jobs:
return jsonify({'error': 'Job not found'}), 404
job = generator.jobs[job_id]
if job['status'] != 'completed':
return jsonify({'error': 'Job not completed'}), 400
output_file = job.get('output_file')
if not output_file or not os.path.exists(output_file):
return jsonify({'error': 'Output file not found'}), 404
return send_file(
output_file,
as_attachment=True,
download_name=f"generated_video_{job_id}.mp4"
)
@app.route('/health', methods=['GET'])
def health_check():
"""Health check endpoint"""
return jsonify({
'status': 'healthy',
'tts_available': generator.tts_pipeline is not None,
'text_to_image_available': generator.text_to_image is not None
})
@app.route('/', methods=['GET'])
def index():
"""API documentation"""
return jsonify({
'message': 'Hugging Face Video Generator API',
'endpoints': {
'POST /generate_video': 'Generate video from images and audio',
'GET /status/<job_id>': 'Get job status',
'GET /download/<job_id>': 'Download generated video',
'GET /health': 'Health check'
},
'example_request': {
'images': [
{'url': 'https://example.com/image1.jpg'},
{'base64': '...'},
{'text_prompt': 'A beautiful sunset over mountains'}
],
'video_params': {
'fps': 30,
'duration_per_image': 3.0,
'transition_duration': 0.5,
'resolution': [1920, 1080],
'transition_type': 'fade'
},
'audio_params': {
'text': 'Welcome to our video presentation',
'volume': 1.0
}
}
})
if __name__ == '__main__':
# Run the Flask server
app.run(
host='0.0.0.0',
port=int(os.getenv('PORT', 5000)),
debug=os.getenv('DEBUG', 'false').lower() == 'true'
)