Spaces:
Sleeping
Sleeping
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import gradio as gr | |
import torch | |
from datetime import datetime | |
from reportlab.lib.pagesizes import letter | |
from reportlab.pdfgen import canvas | |
# Load BLIP model and processor | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
model.eval() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# Inference function to generate captions from images dynamically | |
def generate_captions_from_image(image): | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# Preprocess the image and generate a caption | |
inputs = processor(image, return_tensors="pt").to(device, torch.float16) | |
output = model.generate(**inputs, max_new_tokens=50) | |
caption = processor.decode(output[0], skip_special_tokens=True) | |
return caption | |
# Function to generate the daily progress report | |
def generate_dpr(files): | |
dpr_text = [] | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
# Add header to the PDF | |
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n") | |
# Process each uploaded file (image) | |
for file in files: | |
# Open the image from file path | |
image = Image.open(file.name) # Using file.name for filepath | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# Dynamically generate a caption based on the image | |
caption = generate_captions_from_image(image) | |
# Generate DPR section for this image with dynamic caption | |
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n" | |
dpr_text.append(dpr_section) | |
# Generate a PDF report | |
pdf_path = "dpr_report.pdf" | |
c = canvas.Canvas(pdf_path, pagesize=letter) | |
c.drawString(100, 750, "Daily Progress Report") | |
c.drawString(100, 730, f"Generated on: {current_time}") | |
# Add the detailed captions for each image to the PDF (in text format) | |
y_position = 700 | |
for section in dpr_text: | |
c.drawString(100, y_position, section) | |
y_position -= 100 # Move down for the next section | |
if y_position < 100: | |
c.showPage() | |
y_position = 750 | |
c.save() | |
return pdf_path | |
# Gradio interface for uploading multiple files | |
iface = gr.Interface( | |
fn=generate_dpr, | |
inputs=gr.Files(type="filepath", label="Upload Site Photos"), # Handle batch upload of images | |
outputs="file", | |
title="Daily Progress Report Generator", | |
description="Upload up to 10 site photos. The AI model will dynamically detect construction activities, materials, and progress and generate a PDF report.", | |
allow_flagging="never" # Optional: Disable flagging | |
) | |
iface.launch() | |