DPR / app.py
Rammohan0504's picture
Update app.py
5f58155 verified
raw
history blame
2.89 kB
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Inference function to generate captions from images dynamically
def generate_captions_from_image(image):
if image.mode != "RGB":
image = image.convert("RGB")
# Preprocess the image and generate a caption
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
output = model.generate(**inputs, max_new_tokens=50)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# Function to generate the daily progress report
def generate_dpr(files):
dpr_text = []
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add header to the PDF
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
# Process each uploaded file (image)
for file in files:
# Open the image from file path
image = Image.open(file.name) # Using file.name for filepath
if image.mode != "RGB":
image = image.convert("RGB")
# Dynamically generate a caption based on the image
caption = generate_captions_from_image(image)
# Generate DPR section for this image with dynamic caption
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
dpr_text.append(dpr_section)
# Generate a PDF report
pdf_path = "dpr_report.pdf"
c = canvas.Canvas(pdf_path, pagesize=letter)
c.drawString(100, 750, "Daily Progress Report")
c.drawString(100, 730, f"Generated on: {current_time}")
# Add the detailed captions for each image to the PDF (in text format)
y_position = 700
for section in dpr_text:
c.drawString(100, y_position, section)
y_position -= 100 # Move down for the next section
if y_position < 100:
c.showPage()
y_position = 750
c.save()
return pdf_path
# Gradio interface for uploading multiple files
iface = gr.Interface(
fn=generate_dpr,
inputs=gr.Files(type="filepath", label="Upload Site Photos"), # Handle batch upload of images
outputs="file",
title="Daily Progress Report Generator",
description="Upload up to 10 site photos. The AI model will dynamically detect construction activities, materials, and progress and generate a PDF report.",
allow_flagging="never" # Optional: Disable flagging
)
iface.launch()