File size: 5,426 Bytes
fa547a5
80bd48b
a35cb39
91ff6b0
fa547a5
 
 
 
e9d1ccd
ffdbaab
62ae84e
8f7a4e6
80bd48b
c92e309
fa547a5
06a815f
fa547a5
 
 
 
e9d1ccd
ffdbaab
 
 
 
62ae84e
fa547a5
 
ffdbaab
 
d95bdc7
fa547a5
e8452a3
ffdbaab
d95bdc7
ffdbaab
 
 
 
fa547a5
a35cb39
 
fa547a5
a35cb39
fa547a5
ffdbaab
 
 
 
 
 
 
 
 
fa547a5
ffdbaab
 
 
e9d1ccd
 
d31dc0e
 
 
 
 
 
 
e9d1ccd
 
 
 
 
 
 
 
 
 
ffdbaab
fa547a5
ffdbaab
fa547a5
e9d1ccd
14acaf7
e9d1ccd
fa547a5
e9d1ccd
fa547a5
 
 
 
 
 
 
 
 
 
 
e9d1ccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa547a5
 
e9d1ccd
fa547a5
e9d1ccd
de8a84a
8f7a4e6
 
e9d1ccd
8f7a4e6
e9d1ccd
fa547a5
 
e9d1ccd
 
 
80bd48b
ffdbaab
e9d1ccd
ffdbaab
8f7a4e6
761d854
 
4861682
1a1d215
8f7a4e6
 
fa547a5
761d854
fa547a5
 
 
 
761d854
fa547a5
 
 
 
 
 
 
 
4e2d873
761d854
 
e9d1ccd
676260b
a76637d
761d854
a35cb39
e9d1ccd
fa547a5
 
d34dac0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import cv2
import time
import os
import random
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
from collections import Counter
from services.video_service import get_next_video_frame, reset_video_index
from services.thermal_service import detect_thermal_anomalies
from services.overlay_service import overlay_boxes
from services.metrics_service import update_metrics

# Globals
paused = False
frame_rate = 1
frame_count = 0
log_entries = []
anomaly_counts = []
anomaly_types_all = []
last_frame = None
last_metrics = {}
last_timestamp = ""
last_detected_images = []

# Constants
TEMP_IMAGE_PATH = "temp.jpg"
CAPTURED_FRAMES_DIR = "captured_frames"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)

# Core monitor function
def monitor_feed():
    global paused, frame_count, last_frame, last_metrics, last_timestamp

    if paused and last_frame is not None:
        frame = last_frame.copy()
        metrics = last_metrics.copy()
    else:
        frame = get_next_video_frame()
        detected_boxes = detect_thermal_anomalies(frame)
        frame = overlay_boxes(frame, detected_boxes)
        cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
        metrics = update_metrics(detected_boxes)

        frame_count += 1
        last_timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

        if detected_boxes:
            captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"frame_{frame_count}.jpg")
            cv2.imwrite(captured_frame_path, frame)
            last_detected_images.append(captured_frame_path)
            if len(last_detected_images) > 5:
                last_detected_images.pop(0)

        last_frame = frame.copy()
        last_metrics = metrics.copy()

        # Update persistent logs and stats
        anomaly_detected = len(last_metrics.get('anomalies', []))
        anomaly_types_all.extend([
    a['label']
    for a in last_metrics.get('anomalies', [])
    if isinstance(a, dict) and 'label' in a
])

        
        log_entries.append(f"{last_timestamp} - Frame {frame_count} - Anomalies: {anomaly_detected}")
        anomaly_counts.append(anomaly_detected)

        if len(log_entries) > 100:
            log_entries.pop(0)
        if len(anomaly_counts) > 500:
            anomaly_counts.pop(0)
        if len(anomaly_types_all) > 500:
            anomaly_types_all.pop(0)

    frame = cv2.resize(last_frame, (640, 480))
    cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
    cv2.putText(frame, f"{last_timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)

    return frame[:, :, ::-1], last_metrics, "\n".join(log_entries[-10:]), generate_line_chart(), generate_pie_chart(), last_detected_images

# Line chart

def generate_line_chart():
    fig, ax = plt.subplots(figsize=(4, 2))
    ax.plot(anomaly_counts[-50:], marker='o')
    ax.set_title("Anomalies Over Time")
    ax.set_xlabel("Frame")
    ax.set_ylabel("Count")
    fig.tight_layout()
    chart_path = "chart_temp.png"
    fig.savefig(chart_path)
    plt.close(fig)
    return chart_path

# Pie chart for anomaly types
def generate_pie_chart():
    if not anomaly_types_all:
        return None
    fig, ax = plt.subplots(figsize=(4, 2))
    count = Counter(anomaly_types_all[-200:])
    labels, sizes = zip(*count.items())
    ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
    ax.axis('equal')
    fig.tight_layout()
    pie_path = "pie_temp.png"
    fig.savefig(pie_path)
    plt.close(fig)
    return pie_path

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as app:
    gr.Markdown("# 🛡️ Command Room Dashboard: Thermal Anomaly Monitoring")

    status_text = gr.Markdown("**Status:** 🟢 Running")

    with gr.Row():
        with gr.Column(scale=3):
            video_output = gr.Image(label="Live Video Feed", width=640, height=480)
        with gr.Column(scale=1):
            metrics_output = gr.Textbox(label="Live Metrics", lines=4)

    with gr.Row():
        logs_output = gr.Textbox(label="Live Logs", lines=8)
        chart_output = gr.Image(label="Detection Trend")
        pie_output = gr.Image(label="Anomaly Types")

    with gr.Row():
        captured_images = gr.Gallery(label="Captured Events (Last 5)")

    with gr.Row():
        pause_btn = gr.Button("⏸️ Pause")
        resume_btn = gr.Button("▶️ Resume")
        frame_slider = gr.Slider(0.0005, 5, value=1, label="Frame Interval (seconds)")

    def toggle_pause():
        global paused
        paused = True
        return "**Status:** ⏸️ Paused"

    def toggle_resume():
        global paused
        paused = False
        return "**Status:** 🟢 Running"

    def set_frame_rate(val):
        global frame_rate
        frame_rate = val

    pause_btn.click(toggle_pause, outputs=status_text)
    resume_btn.click(toggle_resume, outputs=status_text)
    frame_slider.change(set_frame_rate, inputs=[frame_slider])

    def streaming_loop():
        while True:
            frame, metrics, logs, chart, pie, captured = monitor_feed()
            # Format metrics display
        yield frame, str(metrics), logs, chart, pie, captured
            time.sleep(frame_rate)

    app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, chart_output, pie_output, captured_images])

if __name__ == "__main__":
    app.launch(share=True)