Spaces:
Runtime error
Runtime error
File size: 5,426 Bytes
fa547a5 80bd48b a35cb39 91ff6b0 fa547a5 e9d1ccd ffdbaab 62ae84e 8f7a4e6 80bd48b c92e309 fa547a5 06a815f fa547a5 e9d1ccd ffdbaab 62ae84e fa547a5 ffdbaab d95bdc7 fa547a5 e8452a3 ffdbaab d95bdc7 ffdbaab fa547a5 a35cb39 fa547a5 a35cb39 fa547a5 ffdbaab fa547a5 ffdbaab e9d1ccd d31dc0e e9d1ccd ffdbaab fa547a5 ffdbaab fa547a5 e9d1ccd 14acaf7 e9d1ccd fa547a5 e9d1ccd fa547a5 e9d1ccd fa547a5 e9d1ccd fa547a5 e9d1ccd de8a84a 8f7a4e6 e9d1ccd 8f7a4e6 e9d1ccd fa547a5 e9d1ccd 80bd48b ffdbaab e9d1ccd ffdbaab 8f7a4e6 761d854 4861682 1a1d215 8f7a4e6 fa547a5 761d854 fa547a5 761d854 fa547a5 4e2d873 761d854 e9d1ccd 676260b a76637d 761d854 a35cb39 e9d1ccd fa547a5 d34dac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
import cv2
import time
import os
import random
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
from collections import Counter
from services.video_service import get_next_video_frame, reset_video_index
from services.thermal_service import detect_thermal_anomalies
from services.overlay_service import overlay_boxes
from services.metrics_service import update_metrics
# Globals
paused = False
frame_rate = 1
frame_count = 0
log_entries = []
anomaly_counts = []
anomaly_types_all = []
last_frame = None
last_metrics = {}
last_timestamp = ""
last_detected_images = []
# Constants
TEMP_IMAGE_PATH = "temp.jpg"
CAPTURED_FRAMES_DIR = "captured_frames"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
# Core monitor function
def monitor_feed():
global paused, frame_count, last_frame, last_metrics, last_timestamp
if paused and last_frame is not None:
frame = last_frame.copy()
metrics = last_metrics.copy()
else:
frame = get_next_video_frame()
detected_boxes = detect_thermal_anomalies(frame)
frame = overlay_boxes(frame, detected_boxes)
cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
metrics = update_metrics(detected_boxes)
frame_count += 1
last_timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if detected_boxes:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"frame_{frame_count}.jpg")
cv2.imwrite(captured_frame_path, frame)
last_detected_images.append(captured_frame_path)
if len(last_detected_images) > 5:
last_detected_images.pop(0)
last_frame = frame.copy()
last_metrics = metrics.copy()
# Update persistent logs and stats
anomaly_detected = len(last_metrics.get('anomalies', []))
anomaly_types_all.extend([
a['label']
for a in last_metrics.get('anomalies', [])
if isinstance(a, dict) and 'label' in a
])
log_entries.append(f"{last_timestamp} - Frame {frame_count} - Anomalies: {anomaly_detected}")
anomaly_counts.append(anomaly_detected)
if len(log_entries) > 100:
log_entries.pop(0)
if len(anomaly_counts) > 500:
anomaly_counts.pop(0)
if len(anomaly_types_all) > 500:
anomaly_types_all.pop(0)
frame = cv2.resize(last_frame, (640, 480))
cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, f"{last_timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
return frame[:, :, ::-1], last_metrics, "\n".join(log_entries[-10:]), generate_line_chart(), generate_pie_chart(), last_detected_images
# Line chart
def generate_line_chart():
fig, ax = plt.subplots(figsize=(4, 2))
ax.plot(anomaly_counts[-50:], marker='o')
ax.set_title("Anomalies Over Time")
ax.set_xlabel("Frame")
ax.set_ylabel("Count")
fig.tight_layout()
chart_path = "chart_temp.png"
fig.savefig(chart_path)
plt.close(fig)
return chart_path
# Pie chart for anomaly types
def generate_pie_chart():
if not anomaly_types_all:
return None
fig, ax = plt.subplots(figsize=(4, 2))
count = Counter(anomaly_types_all[-200:])
labels, sizes = zip(*count.items())
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
ax.axis('equal')
fig.tight_layout()
pie_path = "pie_temp.png"
fig.savefig(pie_path)
plt.close(fig)
return pie_path
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# 🛡️ Command Room Dashboard: Thermal Anomaly Monitoring")
status_text = gr.Markdown("**Status:** 🟢 Running")
with gr.Row():
with gr.Column(scale=3):
video_output = gr.Image(label="Live Video Feed", width=640, height=480)
with gr.Column(scale=1):
metrics_output = gr.Textbox(label="Live Metrics", lines=4)
with gr.Row():
logs_output = gr.Textbox(label="Live Logs", lines=8)
chart_output = gr.Image(label="Detection Trend")
pie_output = gr.Image(label="Anomaly Types")
with gr.Row():
captured_images = gr.Gallery(label="Captured Events (Last 5)")
with gr.Row():
pause_btn = gr.Button("⏸️ Pause")
resume_btn = gr.Button("▶️ Resume")
frame_slider = gr.Slider(0.0005, 5, value=1, label="Frame Interval (seconds)")
def toggle_pause():
global paused
paused = True
return "**Status:** ⏸️ Paused"
def toggle_resume():
global paused
paused = False
return "**Status:** 🟢 Running"
def set_frame_rate(val):
global frame_rate
frame_rate = val
pause_btn.click(toggle_pause, outputs=status_text)
resume_btn.click(toggle_resume, outputs=status_text)
frame_slider.change(set_frame_rate, inputs=[frame_slider])
def streaming_loop():
while True:
frame, metrics, logs, chart, pie, captured = monitor_feed()
# Format metrics display
yield frame, str(metrics), logs, chart, pie, captured
time.sleep(frame_rate)
app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, chart_output, pie_output, captured_images])
if __name__ == "__main__":
app.launch(share=True)
|