File size: 4,075 Bytes
fa547a5
80bd48b
a35cb39
91ff6b0
fa547a5
 
 
 
 
62ae84e
8f7a4e6
80bd48b
c92e309
fa547a5
06a815f
fa547a5
 
 
 
62ae84e
fa547a5
 
d95bdc7
fa547a5
e8452a3
 
fa547a5
d95bdc7
fa547a5
d95bdc7
a35cb39
fa547a5
 
d95bdc7
fa547a5
 
d95bdc7
fa547a5
a35cb39
 
fa547a5
a35cb39
fa547a5
 
 
 
 
 
 
 
 
 
 
 
86ed826
fa547a5
 
 
 
 
 
 
 
86ed826
 
 
 
 
fa547a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761d854
fa547a5
761d854
de8a84a
8f7a4e6
 
fa547a5
8f7a4e6
fa547a5
 
 
 
 
 
 
80bd48b
8f7a4e6
761d854
 
fa547a5
1a1d215
8f7a4e6
 
fa547a5
761d854
fa547a5
 
 
 
761d854
fa547a5
 
 
 
 
 
 
 
4e2d873
761d854
 
 
 
 
a35cb39
761d854
fa547a5
 
d34dac0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import cv2
import time
import os
import random
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
from services.video_service import get_next_video_frame
from services.thermal_service import detect_thermal_anomalies
from services.overlay_service import overlay_boxes
from services.metrics_service import update_metrics

# Globals
paused = False
frame_rate = 1
frame_count = 0
log_entries = []
anomaly_counts = []

# Constants
TEMP_IMAGE_PATH = "temp.jpg"

# Core monitor function
def monitor_feed():
    global paused
    global frame_count

    frame = None

    if paused:
        if os.path.exists(TEMP_IMAGE_PATH):
            frame = cv2.imread(TEMP_IMAGE_PATH)

    if frame is None:
        frame = get_next_video_frame()

    if not paused:
        detected_boxes = detect_thermal_anomalies(frame)
        frame = overlay_boxes(frame, detected_boxes)
        cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
        metrics = update_metrics(detected_boxes)
    else:
        metrics = update_metrics([])

    frame = cv2.resize(frame, (640, 480))  # Fixed window size

    # Add frame count and timestamp
    frame_count += 1
    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
    cv2.putText(frame, f"{timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)

    # Update logs and anomaly counts
    anomaly_detected = metrics["anomalies_detected"]
    log_entries.append(f"{timestamp} - Frame {frame_count} - Anomalies Detected: {anomaly_detected}")
    anomaly_counts.append(anomaly_detected)

    if len(log_entries) > 100:
        log_entries.pop(0)
    if len(anomaly_counts) > 100:
        anomaly_counts.pop(0)

    # THIS IS IMPORTANT FIX 👇
    label_output = {"Anomalies": anomaly_detected}

    return frame[:, :, ::-1], label_output, "\n".join(log_entries[-10:]), generate_chart()


# Chart generator
def generate_chart():
    fig, ax = plt.subplots(figsize=(4, 2))
    ax.plot(anomaly_counts[-50:], marker='o')
    ax.set_title("Anomalies Over Time")
    ax.set_xlabel("Frame")
    ax.set_ylabel("Count")
    fig.tight_layout()
    chart_path = "chart_temp.png"
    fig.savefig(chart_path)
    plt.close(fig)
    return chart_path

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as app:
    gr.Markdown("# 🌐 Thermal Anomaly Monitoring Dashboard", elem_id="main-title")

    status_text = gr.Markdown("**Status:** 🟢 Running", elem_id="status-banner")

    with gr.Row():
        with gr.Column(scale=3):
            video_output = gr.Image(label="Live Video Feed", elem_id="video-feed", width=640, height=480)
        with gr.Column(scale=1):
            metrics_output = gr.Label(label="Live Metrics", elem_id="metrics")

    with gr.Row():
        with gr.Column():
            logs_output = gr.Textbox(label="Live Logs", lines=10)
        with gr.Column():
            chart_output = gr.Image(label="Detection Trends")

    with gr.Row():
        pause_btn = gr.Button("⏸️ Pause")
        resume_btn = gr.Button("▶️ Resume")
        frame_slider = gr.Slider(0.2, 5, value=1, label="Frame Interval (seconds)")

    def toggle_pause():
        global paused
        paused = True
        return "**Status:** ⏸️ Paused"

    def toggle_resume():
        global paused
        paused = False
        return "**Status:** 🟢 Running"

    def set_frame_rate(val):
        global frame_rate
        frame_rate = val

    pause_btn.click(toggle_pause, outputs=status_text)
    resume_btn.click(toggle_resume, outputs=status_text)
    frame_slider.change(set_frame_rate, inputs=[frame_slider])

    def streaming_loop():
        while True:
            frame, metrics, logs, chart = monitor_feed()
            yield frame, metrics, logs, chart
            time.sleep(frame_rate)

    app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, chart_output])

if __name__ == "__main__":
    app.launch(share=True)