Spaces:
Runtime error
Runtime error
from transformers import DetrImageProcessor, DetrForObjectDetection | |
import torch | |
from PIL import Image | |
import cv2 | |
import random | |
# Load model | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") | |
def detect_cracks(frame): | |
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] | |
cracks = [] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
if score >= 0.9: | |
severity = random.choice(['Minor', 'Moderate', 'Severe']) # Simulate severity | |
cracks.append({ | |
'box': box.tolist(), | |
'severity': severity, | |
'confidence': score.item() | |
}) | |
return cracks |