surveillance / app.py
SuriRaja's picture
Update app.py
a76637d
raw
history blame
5.43 kB
import gradio as gr
import cv2
import time
import os
import random
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
from collections import Counter
from services.video_service import get_next_video_frame, reset_video_index
from services.thermal_service import detect_thermal_anomalies
from services.overlay_service import overlay_boxes
from services.metrics_service import update_metrics
# Globals
paused = False
frame_rate = 1
frame_count = 0
log_entries = []
anomaly_counts = []
anomaly_types_all = []
last_frame = None
last_metrics = {}
last_timestamp = ""
last_detected_images = []
# Constants
TEMP_IMAGE_PATH = "temp.jpg"
CAPTURED_FRAMES_DIR = "captured_frames"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
# Core monitor function
def monitor_feed():
global paused, frame_count, last_frame, last_metrics, last_timestamp
if paused and last_frame is not None:
frame = last_frame.copy()
metrics = last_metrics.copy()
else:
frame = get_next_video_frame()
detected_boxes = detect_thermal_anomalies(frame)
frame = overlay_boxes(frame, detected_boxes)
cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
metrics = update_metrics(detected_boxes)
frame_count += 1
last_timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if detected_boxes:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"frame_{frame_count}.jpg")
cv2.imwrite(captured_frame_path, frame)
last_detected_images.append(captured_frame_path)
if len(last_detected_images) > 5:
last_detected_images.pop(0)
last_frame = frame.copy()
last_metrics = metrics.copy()
# Update persistent logs and stats
anomaly_detected = len(last_metrics.get('anomalies', []))
anomaly_types_all.extend([
a['label']
for a in last_metrics.get('anomalies', [])
if isinstance(a, dict) and 'label' in a
])
log_entries.append(f"{last_timestamp} - Frame {frame_count} - Anomalies: {anomaly_detected}")
anomaly_counts.append(anomaly_detected)
if len(log_entries) > 100:
log_entries.pop(0)
if len(anomaly_counts) > 500:
anomaly_counts.pop(0)
if len(anomaly_types_all) > 500:
anomaly_types_all.pop(0)
frame = cv2.resize(last_frame, (640, 480))
cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, f"{last_timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
return frame[:, :, ::-1], last_metrics, "\n".join(log_entries[-10:]), generate_line_chart(), generate_pie_chart(), last_detected_images
# Line chart
def generate_line_chart():
fig, ax = plt.subplots(figsize=(4, 2))
ax.plot(anomaly_counts[-50:], marker='o')
ax.set_title("Anomalies Over Time")
ax.set_xlabel("Frame")
ax.set_ylabel("Count")
fig.tight_layout()
chart_path = "chart_temp.png"
fig.savefig(chart_path)
plt.close(fig)
return chart_path
# Pie chart for anomaly types
def generate_pie_chart():
if not anomaly_types_all:
return None
fig, ax = plt.subplots(figsize=(4, 2))
count = Counter(anomaly_types_all[-200:])
labels, sizes = zip(*count.items())
ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
ax.axis('equal')
fig.tight_layout()
pie_path = "pie_temp.png"
fig.savefig(pie_path)
plt.close(fig)
return pie_path
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# 🛡️ Command Room Dashboard: Thermal Anomaly Monitoring")
status_text = gr.Markdown("**Status:** 🟢 Running")
with gr.Row():
with gr.Column(scale=3):
video_output = gr.Image(label="Live Video Feed", width=640, height=480)
with gr.Column(scale=1):
metrics_output = gr.Textbox(label="Live Metrics", lines=4)
with gr.Row():
logs_output = gr.Textbox(label="Live Logs", lines=8)
chart_output = gr.Image(label="Detection Trend")
pie_output = gr.Image(label="Anomaly Types")
with gr.Row():
captured_images = gr.Gallery(label="Captured Events (Last 5)")
with gr.Row():
pause_btn = gr.Button("⏸️ Pause")
resume_btn = gr.Button("▶️ Resume")
frame_slider = gr.Slider(0.0005, 5, value=1, label="Frame Interval (seconds)")
def toggle_pause():
global paused
paused = True
return "**Status:** ⏸️ Paused"
def toggle_resume():
global paused
paused = False
return "**Status:** 🟢 Running"
def set_frame_rate(val):
global frame_rate
frame_rate = val
pause_btn.click(toggle_pause, outputs=status_text)
resume_btn.click(toggle_resume, outputs=status_text)
frame_slider.change(set_frame_rate, inputs=[frame_slider])
def streaming_loop():
while True:
frame, metrics, logs, chart, pie, captured = monitor_feed()
# Format metrics display
yield frame, str(metrics), logs, chart, pie, captured
time.sleep(frame_rate)
app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, chart_output, pie_output, captured_images])
if __name__ == "__main__":
app.launch(share=True)