surveillance / app.py
SuriRaja's picture
Update app.py
86ed826
raw
history blame
4.08 kB
import gradio as gr
import cv2
import time
import os
import random
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
from services.video_service import get_next_video_frame
from services.thermal_service import detect_thermal_anomalies
from services.overlay_service import overlay_boxes
from services.metrics_service import update_metrics
# Globals
paused = False
frame_rate = 1
frame_count = 0
log_entries = []
anomaly_counts = []
# Constants
TEMP_IMAGE_PATH = "temp.jpg"
# Core monitor function
def monitor_feed():
global paused
global frame_count
frame = None
if paused:
if os.path.exists(TEMP_IMAGE_PATH):
frame = cv2.imread(TEMP_IMAGE_PATH)
if frame is None:
frame = get_next_video_frame()
if not paused:
detected_boxes = detect_thermal_anomalies(frame)
frame = overlay_boxes(frame, detected_boxes)
cv2.imwrite(TEMP_IMAGE_PATH, frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
metrics = update_metrics(detected_boxes)
else:
metrics = update_metrics([])
frame = cv2.resize(frame, (640, 480)) # Fixed window size
# Add frame count and timestamp
frame_count += 1
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
cv2.putText(frame, f"Frame: {frame_count}", (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
cv2.putText(frame, f"{timestamp}", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# Update logs and anomaly counts
anomaly_detected = metrics["anomalies_detected"]
log_entries.append(f"{timestamp} - Frame {frame_count} - Anomalies Detected: {anomaly_detected}")
anomaly_counts.append(anomaly_detected)
if len(log_entries) > 100:
log_entries.pop(0)
if len(anomaly_counts) > 100:
anomaly_counts.pop(0)
# THIS IS IMPORTANT FIX 馃憞
label_output = {"Anomalies": anomaly_detected}
return frame[:, :, ::-1], label_output, "\n".join(log_entries[-10:]), generate_chart()
# Chart generator
def generate_chart():
fig, ax = plt.subplots(figsize=(4, 2))
ax.plot(anomaly_counts[-50:], marker='o')
ax.set_title("Anomalies Over Time")
ax.set_xlabel("Frame")
ax.set_ylabel("Count")
fig.tight_layout()
chart_path = "chart_temp.png"
fig.savefig(chart_path)
plt.close(fig)
return chart_path
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# 馃寪 Thermal Anomaly Monitoring Dashboard", elem_id="main-title")
status_text = gr.Markdown("**Status:** 馃煝 Running", elem_id="status-banner")
with gr.Row():
with gr.Column(scale=3):
video_output = gr.Image(label="Live Video Feed", elem_id="video-feed", width=640, height=480)
with gr.Column(scale=1):
metrics_output = gr.Label(label="Live Metrics", elem_id="metrics")
with gr.Row():
with gr.Column():
logs_output = gr.Textbox(label="Live Logs", lines=10)
with gr.Column():
chart_output = gr.Image(label="Detection Trends")
with gr.Row():
pause_btn = gr.Button("鈴革笍 Pause")
resume_btn = gr.Button("鈻讹笍 Resume")
frame_slider = gr.Slider(0.2, 5, value=1, label="Frame Interval (seconds)")
def toggle_pause():
global paused
paused = True
return "**Status:** 鈴革笍 Paused"
def toggle_resume():
global paused
paused = False
return "**Status:** 馃煝 Running"
def set_frame_rate(val):
global frame_rate
frame_rate = val
pause_btn.click(toggle_pause, outputs=status_text)
resume_btn.click(toggle_resume, outputs=status_text)
frame_slider.change(set_frame_rate, inputs=[frame_slider])
def streaming_loop():
while True:
frame, metrics, logs, chart = monitor_feed()
yield frame, metrics, logs, chart
time.sleep(frame_rate)
app.load(streaming_loop, outputs=[video_output, metrics_output, logs_output, chart_output])
if __name__ == "__main__":
app.launch(share=True)