Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
import os | |
import json | |
import logging | |
import matplotlib.pyplot as plt | |
import csv | |
from datetime import datetime | |
from collections import Counter | |
from typing import List, Dict, Any, Optional | |
from ultralytics import YOLO | |
import ultralytics | |
import time | |
import piexif | |
import zipfile | |
# Set YOLO config directory | |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics" | |
# Set up logging | |
logging.basicConfig( | |
filename="app.log", | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
# Directories | |
CAPTURED_FRAMES_DIR = "captured_frames" | |
OUTPUT_DIR = "outputs" | |
FLIGHT_LOG_DIR = "flight_logs" | |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True) | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True) | |
os.chmod(CAPTURED_FRAMES_DIR, 0o777) | |
os.chmod(OUTPUT_DIR, 0o777) | |
os.chmod(FLIGHT_LOG_DIR, 0o777) | |
# Global variables | |
log_entries: List[str] = [] | |
detected_counts: List[int] = [] | |
detected_issues: List[str] = [] | |
gps_coordinates: List[List[float]] = [] | |
last_metrics: Dict[str, Any] = {} | |
frame_count: int = 0 | |
SAVE_IMAGE_INTERVAL = 1 | |
# Detection classes | |
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"] | |
# Debug: Check environment | |
print(f"Torch version: {torch.__version__}") | |
print(f"Gradio version: {gr.__version__}") | |
print(f"Ultralytics version: {ultralytics.__version__}") | |
print(f"CUDA available: {torch.cuda.is_available()}") | |
# Load custom YOLO model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
model = YOLO('./data/best.pt').to(device) | |
if device == "cuda": | |
model.half() | |
print(f"Model classes: {model.names}") | |
def zip_directory(folder_path: str, zip_path: str) -> str: | |
"""Zip all files in a directory.""" | |
try: | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, _, files in os.walk(folder_path): | |
for file in files: | |
file_path = os.path.join(root, file) | |
arcname = os.path.relpath(file_path, folder_path) | |
zipf.write(file_path, arcname) | |
return zip_path | |
except Exception as e: | |
logging.error(f"Failed to zip {folder_path}: {str(e)}") | |
log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}") | |
return "" | |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str: | |
map_path = os.path.join(OUTPUT_DIR, "map_temp.png") | |
plt.figure(figsize=(4, 4)) | |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points') | |
plt.title("Issue Locations Map") | |
plt.xlabel("Longitude") | |
plt.ylabel("Latitude") | |
plt.legend() | |
plt.savefig(map_path) | |
plt.close() | |
return map_path | |
def write_geotag(image_path: str, gps_coord: List[float]) -> bool: | |
try: | |
lat = abs(gps_coord[0]) | |
lon = abs(gps_coord[1]) | |
lat_ref = "N" if gps_coord[0] >= 0 else "S" | |
lon_ref = "E" if gps_coord[1] >= 0 else "W" | |
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}} | |
exif_dict["GPS"] = { | |
piexif.GPSIFD.GPSLatitudeRef: lat_ref, | |
piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)), | |
piexif.GPSIFD.GPSLongitudeRef: lon_ref, | |
piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1)) | |
} | |
piexif.insert(piexif.dump(exif_dict), image_path) | |
return True | |
except Exception as e: | |
logging.error(f"Failed to geotag {image_path}: {str(e)}") | |
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}") | |
return False | |
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str: | |
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv") | |
try: | |
with open(log_path, 'w', newline='') as csvfile: | |
writer = csv.writer(csvfile) | |
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"]) | |
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60]) | |
return log_path | |
except Exception as e: | |
logging.error(f"Failed to write flight log {log_path}: {str(e)}") | |
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}") | |
return "" | |
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool: | |
height, width, _ = frame.shape | |
frame_resolution = width * height | |
if frame_resolution < 12_000_000: | |
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} ({frame_resolution/1e6:.2f}MP) below 12MP, non-compliant") | |
if frame_resolution < input_resolution: | |
log_entries.append(f"Frame {frame_count}: Output resolution {width}x{height} below input resolution") | |
return False | |
return True | |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]: | |
counts = Counter([det["label"] for det in detections]) | |
return { | |
"items": [{"type": k, "count": v} for k, v in counts.items()], | |
"total_detections": len(detections), | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
def generate_line_chart() -> Optional[str]: | |
if not detected_counts: | |
return None | |
plt.figure(figsize=(4, 2)) | |
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00') | |
plt.title("Detections Over Time") | |
plt.xlabel("Frame") | |
plt.ylabel("Count") | |
plt.grid(True) | |
plt.tight_layout() | |
chart_path = os.path.join(OUTPUT_DIR, "chart_temp.png") | |
plt.savefig(chart_path) | |
plt.close() | |
return chart_path | |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5): | |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries | |
frame_count = 0 | |
detected_counts.clear() | |
detected_issues.clear() | |
gps_coordinates.clear() | |
log_entries.clear() | |
last_metrics = {} | |
if video is None: | |
log_entries.append("Error: No video uploaded") | |
logging.error("No video uploaded") | |
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None | |
start_time = time.time() | |
cap = cv2.VideoCapture(video) | |
if not cap.isOpened(): | |
log_entries.append("Error: Could not open video file") | |
logging.error("Could not open video file") | |
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
input_resolution = frame_width * frame_height | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
expected_duration = total_frames / fps if fps > 0 else 0 | |
log_entries.append(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}") | |
logging.info(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}") | |
print(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}") | |
out_width, out_height = resize_width, resize_height | |
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4") | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height)) | |
if not out.isOpened(): | |
log_entries.append("Error: Failed to initialize mp4v codec") | |
logging.error("Failed to initialize mp4v codec") | |
cap.release() | |
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None | |
processed_frames = 0 | |
all_detections = [] | |
frame_times = [] | |
inference_times = [] | |
resize_times = [] | |
io_times = [] | |
detection_frame_count = 0 | |
output_frame_count = 0 | |
last_annotated_frame = None | |
data_lake_submission = { | |
"images": [], | |
"flight_logs": [], | |
"analytics": [], | |
"metrics": {} | |
} | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
if frame_count % frame_skip != 0: | |
continue | |
processed_frames += 1 | |
frame_start = time.time() | |
# Resize | |
resize_start = time.time() | |
frame = cv2.resize(frame, (out_width, out_height)) | |
resize_times.append((time.time() - resize_start) * 1000) | |
if not check_image_quality(frame, input_resolution): | |
log_entries.append(f"Frame {frame_count}: Skipped due to low resolution") | |
continue | |
# Inference | |
inference_start = time.time() | |
results = model(frame, verbose=False, conf=0.5, iou=0.7) | |
annotated_frame = results[0].plot() | |
inference_times.append((time.time() - inference_start) * 1000) | |
frame_timestamp = frame_count / fps if fps > 0 else 0 | |
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}" | |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)] | |
gps_coordinates.append(gps_coord) | |
io_start = time.time() | |
frame_detections = [] | |
for detection in results[0].boxes: | |
cls = int(detection.cls) | |
conf = float(detection.conf) | |
box = detection.xyxy[0].cpu().numpy().astype(int).tolist() | |
label = model.names[cls] | |
if label in DETECTION_CLASSES: | |
frame_detections.append({ | |
"label": label, | |
"box": box, | |
"conf": conf, | |
"gps": gps_coord, | |
"timestamp": timestamp_str | |
}) | |
log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}" | |
log_entries.append(log_message) | |
logging.info(log_message) | |
if frame_detections: | |
detection_frame_count += 1 | |
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0: | |
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg") | |
if cv2.imwrite(captured_frame_path, annotated_frame): | |
if write_geotag(captured_frame_path, gps_coord): | |
detected_issues.append(captured_frame_path) | |
data_lake_submission["images"].append({ | |
"path": captured_frame_path, | |
"frame": frame_count, | |
"gps": gps_coord, | |
"timestamp": timestamp_str | |
}) | |
if len(detected_issues) > 100: | |
detected_issues.pop(0) | |
else: | |
log_entries.append(f"Frame {frame_count}: Geotagging failed") | |
else: | |
log_entries.append(f"Error: Failed to save {captured_frame_path}") | |
logging.error(f"Failed to save {captured_frame_path}") | |
flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str) | |
if flight_log_path: | |
data_lake_submission["flight_logs"].append({ | |
"path": flight_log_path, | |
"frame": frame_count | |
}) | |
io_times.append((time.time() - io_start) * 1000) | |
out.write(annotated_frame) | |
output_frame_count += 1 | |
last_annotated_frame = annotated_frame | |
if frame_skip > 1: | |
for _ in range(frame_skip - 1): | |
out.write(annotated_frame) | |
output_frame_count += 1 | |
detected_counts.append(len(frame_detections)) | |
all_detections.extend(frame_detections) | |
frame_time = (time.time() - frame_start) * 1000 | |
frame_times.append(frame_time) | |
log_entries.append(f"Frame {frame_count}: Processed in {frame_time:.2f} ms (Resize: {resize_times[-1]:.2f} ms, Inference: {inference_times[-1]:.2f} ms, I/O: {io_times[-1]:.2f} ms)") | |
if len(log_entries) > 50: | |
log_entries.pop(0) | |
if time.time() - start_time > 600: | |
log_entries.append("Error: Processing timeout after 600 seconds") | |
logging.error("Processing timeout after 600 seconds") | |
break | |
while output_frame_count < total_frames and last_annotated_frame is not None: | |
out.write(last_annotated_frame) | |
output_frame_count += 1 | |
last_metrics = update_metrics(all_detections) | |
data_lake_submission["metrics"] = last_metrics | |
data_lake_submission["frame_count"] = frame_count | |
data_lake_submission["gps_coordinates"] = gps_coordinates[-1] if gps_coordinates else [0, 0] | |
submission_json_path = os.path.join(OUTPUT_DIR, "data_lake_submission.json") | |
try: | |
with open(submission_json_path, 'w') as f: | |
json.dump(data_lake_submission, f, indent=2) | |
log_entries.append(f"Submission JSON saved: {submission_json_path}") | |
logging.info(f"Submission JSON saved: {submission_json_path}") | |
except Exception as e: | |
log_entries.append(f"Error: Failed to save submission JSON: {str(e)}") | |
logging.error(f"Failed to save submission JSON: {str(e)}") | |
cap.release() | |
out.release() | |
cap = cv2.VideoCapture(output_path) | |
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
output_fps = cap.get(cv2.CAP_PROP_FPS) | |
output_duration = output_frames / output_fps if output_fps > 0 else 0 | |
cap.release() | |
total_time = time.time() - start_time | |
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0 | |
avg_resize_time = sum(resize_times) / len(resize_times) if resize_times else 0 | |
avg_inference_time = sum(inference_times) / len(inference_times) if inference_times else 0 | |
avg_io_time = sum(io_times) / len(io_times) if io_times else 0 | |
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds") | |
logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds") | |
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}") | |
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}") | |
print(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds") | |
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}") | |
chart_path = generate_line_chart() | |
map_path = generate_map(gps_coordinates[-5:], all_detections) | |
# Zip images and logs | |
images_zip = zip_directory(CAPTURED_FRAMES_DIR, os.path.join(OUTPUT_DIR, "captured_frames.zip")) | |
logs_zip = zip_directory(FLIGHT_LOG_DIR, os.path.join(OUTPUT_DIR, "flight_logs.zip")) | |
return ( | |
output_path, | |
json.dumps(last_metrics, indent=2), | |
"\n".join(log_entries[-10:]), | |
detected_issues, | |
chart_path, | |
map_path, | |
submission_json_path, | |
images_zip, | |
logs_zip, | |
output_path # For video download | |
) | |
# Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface: | |
gr.Markdown("# NHAI Road Defect Detection Dashboard") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
video_input = gr.Video(label="Upload Video (12MP recommended for NHAI compliance)") | |
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1) | |
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1) | |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1) | |
process_btn = gr.Button("Process Video", variant="primary") | |
with gr.Column(scale=1): | |
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False) | |
with gr.Row(): | |
video_output = gr.Video(label="Processed Video") | |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain") | |
with gr.Row(): | |
chart_output = gr.Image(label="Detection Trend") | |
map_output = gr.Image(label="Issue Locations Map") | |
with gr.Row(): | |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False) | |
with gr.Row(): | |
gr.Markdown("## Download Results") | |
with gr.Row(): | |
json_download = gr.File(label="Download Data Lake JSON") | |
images_zip_download = gr.File(label="Download Geotagged Images (ZIP)") | |
logs_zip_download = gr.File(label="Download Flight Logs (ZIP)") | |
video_download = gr.File(label="Download Processed Video") | |
process_btn.click( | |
fn=process_video, | |
inputs=[video_input, width_slider, height_slider, skip_slider], | |
outputs=[ | |
video_output, | |
metrics_output, | |
logs_output, | |
issue_gallery, | |
chart_output, | |
map_output, | |
json_download, | |
images_zip_download, | |
logs_zip_download, | |
video_download | |
] | |
) | |
if __name__ == "__main__": | |
iface.launch() |