File size: 19,375 Bytes
71ba206
 
1379d90
71ba206
1379d90
 
 
4527f8f
1379d90
827922f
6070e3c
 
1379d90
71ba206
1379d90
 
6070e3c
 
754bf02
6070e3c
9ec1a47
 
 
 
 
 
1379d90
 
 
6070e3c
1379d90
 
 
 
 
 
 
0e0342e
5a2600a
04f4d0b
71ba206
1379d90
 
6070e3c
1b0039c
 
 
 
 
 
 
 
 
 
 
1379d90
1b0039c
 
71ba206
9ec1a47
6070e3c
 
 
 
 
 
 
 
 
 
71ba206
5a2600a
1379d90
 
 
 
71ba206
 
 
 
 
 
 
 
5a2600a
 
 
1379d90
5a2600a
 
1379d90
 
 
 
 
 
 
 
 
 
 
 
 
754bf02
 
 
 
 
 
 
 
 
 
 
1379d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754bf02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379d90
754bf02
 
 
 
 
1379d90
754bf02
 
1379d90
 
 
 
6070e3c
 
 
 
 
1379d90
 
 
 
 
754bf02
8c84287
1379d90
8c84287
 
1379d90
71ba206
754bf02
6070e3c
1379d90
 
 
71ba206
 
 
1379d90
 
 
 
 
 
 
754bf02
71ba206
1379d90
71ba206
1379d90
 
 
 
 
 
 
71ba206
a03d512
8c84287
6070e3c
8c84287
 
1379d90
 
 
 
 
 
754bf02
1379d90
 
 
 
 
 
71ba206
1379d90
 
 
 
71ba206
 
 
 
1379d90
71ba206
 
1379d90
 
 
 
71ba206
1379d90
 
 
 
 
754bf02
 
 
1379d90
754bf02
 
71ba206
 
1379d90
 
 
 
 
 
 
 
 
 
 
 
 
71ba206
1379d90
 
71ba206
 
1379d90
 
 
 
 
 
 
 
 
 
754bf02
1379d90
 
 
 
 
 
 
 
 
 
 
 
 
71ba206
 
 
 
1379d90
 
 
 
 
71ba206
1379d90
 
 
71ba206
1379d90
 
71ba206
754bf02
1379d90
754bf02
 
 
 
 
 
 
 
 
1379d90
 
 
71ba206
754bf02
 
 
 
 
 
 
 
 
 
1379d90
 
 
 
754bf02
1379d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754bf02
71ba206
1379d90
 
 
754bf02
 
 
 
 
 
 
 
 
1379d90
71ba206
1379d90
754bf02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
import csv
import time
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import piexif
import zipfile

os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
FLIGHT_LOG_DIR = "flight_logs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
os.chmod(FLIGHT_LOG_DIR, 0o777)

log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1
DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]

device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
    model.half()

def zip_directory(folder_path: str, zip_path: str) -> str:
    try:
        with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
            for root, _, files in os.walk(folder_path):
                for file in files:
                    file_path = os.path.join(root, file)
                    arcname = os.path.relpath(file_path, folder_path)
                    zipf.write(file_path, arcname)
        return zip_path
    except Exception as e:
        logging.error(f"Failed to zip {folder_path}: {str(e)}")
        log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}")
        return ""

def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
    map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
    plt.figure(figsize=(4, 4))
    plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
    plt.title("Issue Locations Map")
    plt.xlabel("Longitude")
    plt.ylabel("Latitude")
    plt.legend()
    plt.savefig(map_path)
    plt.close()
    return map_path

def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
    try:
        lat = abs(gps_coord[0])
        lon = abs(gps_coord[1])
        lat_ref = "N" if gps_coord[0] >= 0 else "S"
        lon_ref = "E" if gps_coord[1] >= 0 else "W"
        exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
        exif_dict["GPS"] = {
            piexif.GPSIFD.GPSLatitudeRef: lat_ref,
            piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
            piexif.GPSIFD.GPSLongitudeRef: lon_ref,
            piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
        }
        piexif.insert(piexif.dump(exif_dict), image_path)
        return True
    except Exception as e:
        logging.error(f"Failed to geotag {image_path}: {str(e)}")
        log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
        return False

def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
    log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
    try:
        with open(log_path, 'w', newline='') as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
            writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
        return log_path
    except Exception as e:
        logging.error(f"Failed to write flight log {log_path}: {str(e)}")
        log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
        return ""

def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
    height, width, _ = frame.shape
    frame_resolution = width * height
    if frame_resolution < 12_000_000:
        log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 12MP")
        return False
    if frame_resolution < input_resolution:
        log_entries.append(f"Frame {frame_count}: Output resolution below input")
        return False
    return True

def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
    counts = Counter([det["label"] for det in detections])
    return {
        "items": [{"type": k, "count": v} for k, v in counts.items()],
        "total_detections": len(detections),
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }

def generate_line_chart() -> Optional[str]:
    if not detected_counts:
        return None
    plt.figure(figsize=(4, 2))
    plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
    plt.title("Detections Over Time")
    plt.xlabel("Frame")
    plt.ylabel("Count")
    plt.grid(True)
    plt.tight_layout()
    chart_path = os.path.join(OUTPUT_DIR, "chart_temp.png")
    plt.savefig(chart_path)
    plt.close()
    return chart_path

def generate_report(
    metrics: Dict[str, Any],
    detected_issues: List[str],
    gps_coordinates: List[List[float]],
    all_detections: List[Dict[str, Any]],
    frame_count: int,
    total_time: float,
    output_frames: int,
    output_fps: float,
    output_duration: float,
    detection_frame_count: int,
    chart_path: str,
    map_path: str
) -> str:
    report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
    report_content = [
        "# NHAI Drone Survey Analysis Report",
        "",
        "## Project Details",
        "- Project Name: NH-44 Delhi-Hyderabad Section (Package XYZ)",
        "- Highway Section: Km 100 to Km 150",
        "- State: Telangana",
        "- Region: South",
        f"- Survey Date: {datetime.now().strftime('%Y-%m-%d')}",
        "- Drone Service Provider: ABC Drone Services Pvt. Ltd.",
        "- Technology Service Provider: XYZ AI Analytics Ltd.",
        f"- Work Order Reference: Data Lake WO-{datetime.now().strftime('%Y-%m-%d')}-XYZ",
        "- Report Prepared By: Nagasurendra, Data Analyst",
        f"- Report Date: {datetime.now().strftime('%Y-%m-%d')}",
        "",
        "## 1. Introduction",
        "This report consolidates drone survey results for NH-44 (Km 100–150) under Operations & Maintenance, per NHAI Policy Circular No. 18.98/2024, detecting potholes and cracks using YOLOv8 for Monthly Progress Report integration.",
        "",
        "## 2. Drone Survey Metadata",
        "- Drone Speed: 5 m/s",
        "- Drone Height: 60 m",
        "- Camera Sensor: RGB, 12 MP",
        "- Recording Type: JPEG, 90° nadir",
        "- Image Overlap: 85%",
        "- Flight Pattern: Single lap, ROW centered",
        "- Geotagging: Enabled",
        "- Satellite Lock: 12 satellites",
        "- Terrain Follow Mode: Enabled",
        "",
        "## 3. Quality Check Results",
        f"- Resolution: 4000x3000 (12 MP)",
        "- Overlap: 85%",
        "- Camera Angle: 90° nadir",
        "- Drone Speed: ≤ 5 m/s",
        "- Geotagging: 100% compliant",
        "- QC Status: Passed",
        "",
        "## 4. AI/ML Analytics",
        f"- Total Frames Processed: {frame_count}",
        f"- Detection Frames: {detection_frame_count} ({detection_frame_count/frame_count*100:.2f}%)",
        f"- Total Detections: {metrics['total_detections']}",
        "  - Breakdown:"
    ]

    for item in metrics.get("items", []):
        percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
        report_content.append(f"    - {item['type']}: {item['count']} ({percentage:.2f}%)")
    report_content.extend([
        f"- Processing Time: {total_time:.2f} seconds",
        f"- Timestamp: {metrics.get('timestamp', 'N/A')}",
        "- Summary: Potholes and cracks detected in high-traffic segments.",
        "",
        "## 5. Geotagged Data Summary",
        f"- Total Images: {len(detected_issues)}",
        f"- Storage: Data Lake `/project_xyz/images/{datetime.now().strftime('%Y-%m-%d')}`"
    ])

    if detected_issues:
        report_content.extend([
            "| Frame | Issue Type | GPS (Lat, Lon) | Timestamp | Image Path |",
            "|-------|------------|----------------|-----------|------------|"
        ])
        for i, detection in enumerate(all_detections[:5]):
            report_content.append(
                f"| {detection['frame']:06d} | {detection['label']} | ({detection['gps'][0]}, {detection['gps'][1]}) | {detection['timestamp']} | {detection['path']} |"
            )

    report_content.extend([
        "",
        "## 6. Flight Log Summary",
        f"- Total Logs: {len(detected_issues)}",
        "- Parameters: Frame, Timestamp, Latitude, Longitude, Speed (5 m/s), Satellites (12), Altitude (60 m)",
        "- Sample Log:",
        "```csv",
        f"Frame,Timestamp,Latitude,Longitude,Speed_ms,Satellites,Altitude_m",
        f"{all_detections[0]['frame'] if all_detections else 0},{all_detections[0]['timestamp'] if all_detections else 'N/A'},{all_detections[0]['gps'][0] if all_detections else 0},{all_detections[0]['gps'][1] if all_detections else 0},5.0,12,60",
        "```",
        f"- Storage: Data Lake `/project_xyz/flight_logs/{datetime.now().strftime('%Y-%m-%d')}`",
        "",
        "## 7. Visualizations",
        f"- Detection Trend Chart: `/project_xyz/charts/chart_temp_{datetime.now().strftime('%Y%m%d')}.png`",
        f"- Issue Locations Map: `/project_xyz/maps/map_temp_{datetime.now().strftime('%Y%m%d')}.png`",
        "",
        "## 8. Stakeholder Validation",
        "- AE/IE Comments: [Pending]",
        "- PD/RO Comments: [Pending]",
        "",
        "## 9. Recommendations",
        "- Repair potholes in high-traffic segments.",
        "- Seal cracks to prevent degradation.",
        "- Schedule follow-up survey.",
        "",
        "## 10. Data Lake References",
        f"- Images: `/project_xyz/images/{datetime.now().strftime('%Y-%m-%d')}`",
        f"- Flight Logs: `/project_xyz/flight_logs/{datetime.now().strftime('%Y-%m-%d')}`",
        f"- Video: `/project_xyz/videos/processed_output_{datetime.now().strftime('%Y%m%d')}.mp4`",
        f"- DAMS Dashboard: `/project_xyz/dams/{datetime.now().strftime('%Y-%m-%d')}`"
    ])

    try:
        with open(report_path, 'w') as f:
            f.write("\n".join(report_content))
        logging.info(f"Report saved: {report_path}")
        return report_path
    except Exception as e:
        logging.error(f"Failed to save report: {str(e)}")
        log_entries.append(f"Error: Failed to save report: {str(e)}")
        return ""

def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
    global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
    frame_count = 0
    detected_counts.clear()
    detected_issues.clear()
    gps_coordinates.clear()
    log_entries.clear()
    last_metrics = {}

    if video is None:
        log_entries.append("Error: No video uploaded")
        logging.error("No video uploaded")
        return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None

    start_time = time.time()
    cap = cv2.VideoCapture(video)
    if not cap.isOpened():
        log_entries.append("Error: Could not open video file")
        logging.error("Could not open video file")
        return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    input_resolution = frame_width * frame_height
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    out_width, out_height = resize_width, resize_height
    output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height))
    if not out.isOpened():
        log_entries.append("Error: Failed to initialize mp4v codec")
        logging.error("Failed to initialize mp4v codec")
        cap.release()
        return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None

    processed_frames = 0
    all_detections = []
    frame_times = []
    inference_times = []
    resize_times = []
    io_times = []
    detection_frame_count = 0
    output_frame_count = 0
    last_annotated_frame = None

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        if frame_count % frame_skip != 0:
            continue
        processed_frames += 1
        frame_start = time.time()

        frame = cv2.resize(frame, (out_width, out_height))
        resize_times.append((time.time() - frame_start) * 1000)

        if not check_image_quality(frame, input_resolution):
            continue

        inference_start = time.time()
        results = model(frame, verbose=False, conf=0.5, iou=0.7)
        annotated_frame = results[0].plot()
        inference_times.append((time.time() - inference_start) * 1000)

        frame_timestamp = frame_count / fps if fps > 0 else 0
        timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"

        gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
        gps_coordinates.append(gps_coord)

        io_start = time.time()
        frame_detections = []
        for detection in results[0].boxes:
            cls = int(detection.cls)
            conf = float(detection.conf)
            box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
            label = model.names[cls]
            if label in DETECTION_CLASSES:
                frame_detections.append({
                    "label": label,
                    "box": box,
                    "conf": conf,
                    "gps": gps_coord,
                    "timestamp": timestamp_str,
                    "frame": frame_count,
                    "path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
                })
                log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}")
                logging.info(f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}")

        if frame_detections:
            detection_frame_count += 1
            if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
                captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
                if cv2.imwrite(captured_frame_path, annotated_frame):
                    if write_geotag(captured_frame_path, gps_coord):
                        detected_issues.append(captured_frame_path)
                        if len(detected_issues) > 100:
                            detected_issues.pop(0)
                    else:
                        log_entries.append(f"Frame {frame_count}: Geotagging failed")
                else:
                    log_entries.append(f"Error: Failed to save {captured_frame_path}")
                    logging.error(f"Failed to save {captured_frame_path}")

        flight_log_path = write_flight_log(frame_count, gps_coord, timestamp_str)
        io_times.append((time.time() - io_start) * 1000)

        out.write(annotated_frame)
        output_frame_count += 1
        last_annotated_frame = annotated_frame
        if frame_skip > 1:
            for _ in range(frame_skip - 1):
                out.write(annotated_frame)
                output_frame_count += 1

        detected_counts.append(len(frame_detections))
        all_detections.extend(frame_detections)

        frame_times.append((time.time() - frame_start) * 1000)
        if len(log_entries) > 50:
            log_entries.pop(0)

        if time.time() - start_time > 600:
            log_entries.append("Error: Processing timeout after 600 seconds")
            logging.error("Processing timeout after 600 seconds")
            break

    while output_frame_count < total_frames and last_annotated_frame is not None:
        out.write(last_annotated_frame)
        output_frame_count += 1

    last_metrics = update_metrics(all_detections)

    cap.release()
    out.release()

    cap = cv2.VideoCapture(output_path)
    output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    output_fps = cap.get(cv2.CAP_PROP_FPS)
    output_duration = output_frames / output_fps if output_fps > 0 else 0
    cap.release()

    total_time = time.time() - start_time
    log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
    logging.info(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")

    chart_path = generate_line_chart()
    map_path = generate_map(gps_coordinates[-5:], all_detections)

    report_path = generate_report(
        last_metrics,
        detected_issues,
        gps_coordinates,
        all_detections,
        frame_count,
        total_time,
        output_frames,
        output_fps,
        output_duration,
        detection_frame_count,
        chart_path,
        map_path
    )

    return (
        output_path,
        json.dumps(last_metrics, indent=2),
        "\n".join(log_entries[-10:]),
        detected_issues,
        chart_path,
        map_path,
        report_path
    )

with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
    gr.Markdown("# NHAI Road Defect Detection Dashboard")
    with gr.Row():
        with gr.Column(scale=3):
            video_input = gr.Video(label="Upload Video (12MP recommended)")
            width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
            height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
            skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
            process_btn = gr.Button("Process Video", variant="primary")
        with gr.Column(scale=1):
            metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
    with gr.Row():
        video_output = gr.Video(label="Processed Video")
        issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
    with gr.Row():
        chart_output = gr.Image(label="Detection Trend")
        map_output = gr.Image(label="Issue Locations Map")
    with gr.Row():
        logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
    with gr.Row():
        gr.Markdown("## Download Results")
    with gr.Row():
        report_download = gr.File(label="Download Analysis Report (Markdown)")

    process_btn.click(
        fn=process_video,
        inputs=[video_input, width_slider, height_slider, skip_slider],
        outputs=[
            video_output,
            metrics_output,
            logs_output,
            issue_gallery,
            chart_output,
            map_output,
            report_download
        ]
    )

if __name__ == "__main__":
    iface.launch()