File size: 8,723 Bytes
6cb50ff
a03d512
 
04f4d0b
8c84287
6070e3c
 
4527f8f
db24399
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db24399
6070e3c
 
db24399
6070e3c
 
db24399
6070e3c
 
 
 
 
 
 
 
 
db24399
8c84287
db24399
04f4d0b
8c84287
6070e3c
db24399
 
6070e3c
db24399
6070e3c
 
 
 
 
 
 
 
 
 
 
 
 
db24399
6070e3c
 
 
 
 
 
 
 
 
 
 
 
db24399
6070e3c
 
 
 
 
 
 
 
 
 
 
db24399
 
 
 
 
 
 
 
 
 
6070e3c
 
 
 
 
 
 
 
8c84287
db24399
 
 
 
8c84287
6070e3c
db24399
6070e3c
8c84287
 
6070e3c
db24399
6070e3c
 
 
 
 
 
db24399
6070e3c
 
 
 
db24399
6070e3c
a03d512
8c84287
6070e3c
8c84287
 
 
 
6070e3c
db24399
6070e3c
 
 
db24399
 
 
 
6070e3c
 
 
 
 
 
db24399
6070e3c
 
 
 
db24399
 
 
 
 
6070e3c
db24399
6070e3c
 
 
 
 
db24399
 
6070e3c
 
 
 
 
 
db24399
6070e3c
 
 
 
 
 
 
 
 
db24399
 
6070e3c
 
 
 
 
 
 
db24399
 
 
6070e3c
6cb50ff
db24399
6070e3c
db24399
 
2e47361
6070e3c
 
 
 
 
 
 
 
db24399
6070e3c
 
 
db24399
6070e3c
 
 
db24399
6070e3c
 
 
db24399
 
 
 
6070e3c
 
 
db24399
 
 
 
 
 
 
 
 
 
2e47361
8c84287
 
db24399
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
import zipfile
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time

# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"

# Set up logging
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s"
)

# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
ORIGINAL_FRAMES_DIR = "original_frames"
OUTPUT_DIR = "outputs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(ORIGINAL_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(ORIGINAL_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)

# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1

# Load model
device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
    model.half()
print(f"Using {device}, model classes: {model.names}")

# Helper functions
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
    map_path = "map_temp.png"
    plt.figure(figsize=(4, 4))
    plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
    plt.title("Issue Locations Map")
    plt.xlabel("Longitude")
    plt.ylabel("Latitude")
    plt.legend()
    plt.savefig(map_path)
    plt.close()
    return map_path

def send_to_salesforce(data: Dict[str, Any]) -> None:
    pass  # Placeholder

def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
    counts = Counter([det["label"] for det in detections])
    return {
        "items": [{"type": k, "count": v} for k, v in counts.items()],
        "total_detections": len(detections),
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }

def generate_line_chart() -> Optional[str]:
    if not detected_counts:
        return None
    chart_path = "chart_temp.png"
    plt.figure(figsize=(4, 2))
    plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
    plt.title("Detections Over Time")
    plt.xlabel("Frame")
    plt.ylabel("Count")
    plt.grid(True)
    plt.tight_layout()
    plt.savefig(chart_path)
    plt.close()
    return chart_path

def create_zip_from_directory(dir_path: str, zip_filename: str) -> str:
    zip_path = os.path.join(OUTPUT_DIR, zip_filename)
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        for root, _, files in os.walk(dir_path):
            for file in files:
                full_path = os.path.join(root, file)
                zipf.write(full_path, arcname=file)
    return zip_path

# Main function
def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
    global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
    frame_count = 0
    detected_counts.clear()
    detected_issues.clear()
    gps_coordinates.clear()
    log_entries.clear()
    last_metrics = {}

    for dir_ in [CAPTURED_FRAMES_DIR, ORIGINAL_FRAMES_DIR]:
        for file in os.listdir(dir_):
            os.remove(os.path.join(dir_, file))

    if video is None:
        log_entries.append("Error: No video uploaded")
        return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None

    cap = cv2.VideoCapture(video)
    if not cap.isOpened():
        log_entries.append("Error: Could not open video file")
        return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    output_path = "processed_output.mp4"
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (resize_width, resize_height))

    all_detections = []
    frame_times = []
    detection_frame_count = 0
    start_time = time.time()

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        if frame_count % frame_skip != 0:
            continue

        frame = cv2.resize(frame, (resize_width, resize_height))
        results = model(frame, verbose=False, conf=0.5, iou=0.7)
        annotated_frame = results[0].plot()

        # Save original frame
        original_path = os.path.join(ORIGINAL_FRAMES_DIR, f"frame_{frame_count}.jpg")
        cv2.imwrite(original_path, frame)

        frame_detections = []
        for detection in results[0].boxes:
            cls = int(detection.cls)
            conf = float(detection.conf)
            box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
            label = model.names[cls]
            frame_detections.append({"label": label, "box": box, "conf": conf})

        if frame_detections:
            detection_frame_count += 1
            if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
                captured_path = os.path.join(CAPTURED_FRAMES_DIR, f"frame_{frame_count}.jpg")
                cv2.imwrite(captured_path, annotated_frame)
                detected_issues.append(captured_path)
                if len(detected_issues) > 100:
                    detected_issues.pop(0)

        out.write(annotated_frame)
        gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
        gps_coordinates.append(gps_coord)
        for det in frame_detections:
            det["gps"] = gps_coord
        all_detections.extend(frame_detections)
        detected_counts.append(len(frame_detections))
        frame_time = (time.time() - start_time) * 1000
        frame_times.append(frame_time)

    last_metrics = update_metrics(all_detections)
    send_to_salesforce({
        "detections": all_detections,
        "metrics": last_metrics,
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
        "frame_count": frame_count,
        "gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
    })

    cap.release()
    out.release()

    chart_path = generate_line_chart()
    map_path = generate_map(gps_coordinates[-5:], all_detections)
    originals_zip = create_zip_from_directory(ORIGINAL_FRAMES_DIR, "original_images.zip")
    annotated_zip = create_zip_from_directory(CAPTURED_FRAMES_DIR, "annotated_images.zip")

    return (
        output_path,
        json.dumps(last_metrics, indent=2),
        "\n".join(log_entries[-10:]),
        detected_issues,
        chart_path,
        map_path,
        originals_zip,
        annotated_zip
    )

# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
    gr.Markdown("# Crack and Pothole Detection Dashboard")

    with gr.Row():
        with gr.Column(scale=3):
            video_input = gr.Video(label="Upload Video")
            width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
            height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
            skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
            process_btn = gr.Button("Process Video", variant="primary")
        with gr.Column(scale=1):
            metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)

    with gr.Row():
        video_output = gr.Video(label="Processed Video")
        issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")

    with gr.Row():
        chart_output = gr.Image(label="Detection Trend")
        map_output = gr.Image(label="Issue Locations Map")

    with gr.Row():
        logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)

    with gr.Row():
        originals_zip_out = gr.File(label="Download Original Images (ZIP)")
        annotated_zip_out = gr.File(label="Download Annotated Images (ZIP)")

    process_btn.click(
        process_video,
        inputs=[video_input, width_slider, height_slider, skip_slider],
        outputs=[
            video_output,
            metrics_output,
            logs_output,
            issue_gallery,
            chart_output,
            map_output,
            originals_zip_out,
            annotated_zip_out
        ]
    )

if __name__ == "__main__":
    iface.launch()