Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import os
|
|
6 |
import json
|
7 |
import logging
|
8 |
import matplotlib.pyplot as plt
|
|
|
9 |
from datetime import datetime
|
10 |
from collections import Counter
|
11 |
from typing import List, Dict, Any, Optional
|
@@ -25,10 +26,13 @@ logging.basicConfig(
|
|
25 |
|
26 |
# Directories
|
27 |
CAPTURED_FRAMES_DIR = "captured_frames"
|
|
|
28 |
OUTPUT_DIR = "outputs"
|
29 |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
|
|
|
30 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
31 |
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
|
|
|
32 |
os.chmod(OUTPUT_DIR, 0o777)
|
33 |
|
34 |
# Global variables
|
@@ -38,23 +42,16 @@ detected_issues: List[str] = []
|
|
38 |
gps_coordinates: List[List[float]] = []
|
39 |
last_metrics: Dict[str, Any] = {}
|
40 |
frame_count: int = 0
|
41 |
-
SAVE_IMAGE_INTERVAL = 1
|
42 |
|
43 |
-
#
|
44 |
-
print(f"Torch version: {torch.__version__}")
|
45 |
-
print(f"Gradio version: {gr.__version__}")
|
46 |
-
print(f"Ultralytics version: {ultralytics.__version__}")
|
47 |
-
print(f"CUDA available: {torch.cuda.is_available()}")
|
48 |
-
|
49 |
-
# Load custom YOLO model
|
50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
-
print(f"Using device: {device}")
|
52 |
model = YOLO('./data/best.pt').to(device)
|
53 |
if device == "cuda":
|
54 |
-
model.half()
|
55 |
-
print(f"
|
56 |
|
57 |
-
#
|
58 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
59 |
map_path = "map_temp.png"
|
60 |
plt.figure(figsize=(4, 4))
|
@@ -68,7 +65,7 @@ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) ->
|
|
68 |
return map_path
|
69 |
|
70 |
def send_to_salesforce(data: Dict[str, Any]) -> None:
|
71 |
-
pass #
|
72 |
|
73 |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
74 |
counts = Counter([det["label"] for det in detections])
|
@@ -81,6 +78,7 @@ def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
|
81 |
def generate_line_chart() -> Optional[str]:
|
82 |
if not detected_counts:
|
83 |
return None
|
|
|
84 |
plt.figure(figsize=(4, 2))
|
85 |
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
|
86 |
plt.title("Detections Over Time")
|
@@ -88,11 +86,20 @@ def generate_line_chart() -> Optional[str]:
|
|
88 |
plt.ylabel("Count")
|
89 |
plt.grid(True)
|
90 |
plt.tight_layout()
|
91 |
-
chart_path = "chart_temp.png"
|
92 |
plt.savefig(chart_path)
|
93 |
plt.close()
|
94 |
return chart_path
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
97 |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
98 |
frame_count = 0
|
@@ -102,56 +109,30 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
102 |
log_entries.clear()
|
103 |
last_metrics = {}
|
104 |
|
|
|
|
|
|
|
|
|
105 |
if video is None:
|
106 |
log_entries.append("Error: No video uploaded")
|
107 |
-
|
108 |
-
return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None
|
109 |
|
110 |
-
start_time = time.time()
|
111 |
cap = cv2.VideoCapture(video)
|
112 |
if not cap.isOpened():
|
113 |
log_entries.append("Error: Could not open video file")
|
114 |
-
|
115 |
-
return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None
|
116 |
|
117 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
118 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
119 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
120 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
121 |
-
expected_duration = total_frames / fps if fps > 0 else 0
|
122 |
-
log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
|
123 |
-
logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
|
124 |
-
print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
|
125 |
-
|
126 |
-
out_width, out_height = resize_width, resize_height
|
127 |
output_path = "processed_output.mp4"
|
128 |
-
|
129 |
-
codecs = [('mp4v', '.mp4'), ('MJPG', '.avi'), ('XVID', '.avi')]
|
130 |
-
out = None
|
131 |
-
for codec, ext in codecs:
|
132 |
-
fourcc = cv2.VideoWriter_fourcc(*codec)
|
133 |
-
output_path = f"processed_output{ext}"
|
134 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height))
|
135 |
-
if out.isOpened():
|
136 |
-
log_entries.append(f"Using codec: {codec}, output: {output_path}")
|
137 |
-
logging.info(f"Using codec: {codec}, output: {output_path}")
|
138 |
-
break
|
139 |
-
else:
|
140 |
-
log_entries.append(f"Failed to initialize codec: {codec}")
|
141 |
-
logging.warning(f"Failed to initialize codec: {codec}")
|
142 |
-
|
143 |
-
if not out or not out.isOpened():
|
144 |
-
log_entries.append("Error: All codecs failed to initialize video writer")
|
145 |
-
logging.error("All codecs failed to initialize video writer")
|
146 |
-
cap.release()
|
147 |
-
return "processed_output.mp4", json.dumps({"error": "All codecs failed"}, indent=2), "\n".join(log_entries), [], None, None
|
148 |
|
149 |
-
processed_frames = 0
|
150 |
all_detections = []
|
151 |
frame_times = []
|
152 |
detection_frame_count = 0
|
153 |
-
|
154 |
-
last_annotated_frame = None
|
155 |
|
156 |
while True:
|
157 |
ret, frame = cap.read()
|
@@ -160,77 +141,47 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
160 |
frame_count += 1
|
161 |
if frame_count % frame_skip != 0:
|
162 |
continue
|
163 |
-
processed_frames += 1
|
164 |
-
frame_start = time.time()
|
165 |
|
166 |
-
frame = cv2.resize(frame, (
|
167 |
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
168 |
annotated_frame = results[0].plot()
|
169 |
|
|
|
|
|
|
|
|
|
170 |
frame_detections = []
|
171 |
for detection in results[0].boxes:
|
172 |
cls = int(detection.cls)
|
173 |
conf = float(detection.conf)
|
174 |
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
175 |
label = model.names[cls]
|
176 |
-
|
177 |
-
frame_detections.append({"label": label, "box": box, "conf": conf})
|
178 |
-
log_entries.append(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
|
179 |
-
logging.info(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
|
180 |
|
181 |
if frame_detections:
|
182 |
detection_frame_count += 1
|
183 |
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
detected_issues.append(captured_frame_path)
|
190 |
-
if len(detected_issues) > 100:
|
191 |
-
detected_issues.pop(0)
|
192 |
-
|
193 |
-
# Write frame and duplicates
|
194 |
-
out.write(annotated_frame)
|
195 |
-
output_frame_count += 1
|
196 |
-
last_annotated_frame = annotated_frame
|
197 |
-
if frame_skip > 1:
|
198 |
-
for _ in range(frame_skip - 1):
|
199 |
-
out.write(annotated_frame)
|
200 |
-
output_frame_count += 1
|
201 |
|
202 |
-
|
203 |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
204 |
gps_coordinates.append(gps_coord)
|
205 |
for det in frame_detections:
|
206 |
det["gps"] = gps_coord
|
207 |
all_detections.extend(frame_detections)
|
208 |
-
|
209 |
-
frame_time = (time.time() -
|
210 |
frame_times.append(frame_time)
|
211 |
-
detection_summary = {
|
212 |
-
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
213 |
-
"frame": frame_count,
|
214 |
-
"longitudinal": sum(1 for det in frame_detections if det["label"] == "Longitudinal"),
|
215 |
-
"pothole": sum(1 for det in frame_detections if det["label"] == "Pothole"),
|
216 |
-
"transverse": sum(1 for det in frame_detections if det["label"] == "Transverse"),
|
217 |
-
"gps": gps_coord,
|
218 |
-
"processing_time_ms": frame_time
|
219 |
-
}
|
220 |
-
log_entries.append(json.dumps(detection_summary, indent=2))
|
221 |
-
if len(log_entries) > 50:
|
222 |
-
log_entries.pop(0)
|
223 |
-
|
224 |
-
# Pad remaining frames
|
225 |
-
while output_frame_count < total_frames and last_annotated_frame is not None:
|
226 |
-
out.write(last_annotated_frame)
|
227 |
-
output_frame_count += 1
|
228 |
|
229 |
last_metrics = update_metrics(all_detections)
|
230 |
send_to_salesforce({
|
231 |
"detections": all_detections,
|
232 |
"metrics": last_metrics,
|
233 |
-
"timestamp":
|
234 |
"frame_count": frame_count,
|
235 |
"gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
|
236 |
})
|
@@ -238,23 +189,10 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
238 |
cap.release()
|
239 |
out.release()
|
240 |
|
241 |
-
cap = cv2.VideoCapture(output_path)
|
242 |
-
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
243 |
-
output_fps = cap.get(cv2.CAP_PROP_FPS)
|
244 |
-
output_duration = output_frames / output_fps if output_fps > 0 else 0
|
245 |
-
cap.release()
|
246 |
-
|
247 |
-
total_time = time.time() - start_time
|
248 |
-
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
|
249 |
-
log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
250 |
-
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
251 |
-
logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
252 |
-
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
253 |
-
print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
|
254 |
-
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
255 |
-
|
256 |
chart_path = generate_line_chart()
|
257 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
|
|
|
|
258 |
|
259 |
return (
|
260 |
output_path,
|
@@ -262,12 +200,15 @@ def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
|
262 |
"\n".join(log_entries[-10:]),
|
263 |
detected_issues,
|
264 |
chart_path,
|
265 |
-
map_path
|
|
|
|
|
266 |
)
|
267 |
|
268 |
-
# Gradio
|
269 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
270 |
-
gr.Markdown("#
|
|
|
271 |
with gr.Row():
|
272 |
with gr.Column(scale=3):
|
273 |
video_input = gr.Video(label="Upload Video")
|
@@ -277,20 +218,36 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
|
277 |
process_btn = gr.Button("Process Video", variant="primary")
|
278 |
with gr.Column(scale=1):
|
279 |
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
|
|
|
280 |
with gr.Row():
|
281 |
video_output = gr.Video(label="Processed Video")
|
282 |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
|
|
283 |
with gr.Row():
|
284 |
chart_output = gr.Image(label="Detection Trend")
|
285 |
map_output = gr.Image(label="Issue Locations Map")
|
|
|
286 |
with gr.Row():
|
287 |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
288 |
|
|
|
|
|
|
|
|
|
289 |
process_btn.click(
|
290 |
process_video,
|
291 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
292 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
)
|
294 |
|
295 |
if __name__ == "__main__":
|
296 |
-
iface.launch()
|
|
|
6 |
import json
|
7 |
import logging
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
import zipfile
|
10 |
from datetime import datetime
|
11 |
from collections import Counter
|
12 |
from typing import List, Dict, Any, Optional
|
|
|
26 |
|
27 |
# Directories
|
28 |
CAPTURED_FRAMES_DIR = "captured_frames"
|
29 |
+
ORIGINAL_FRAMES_DIR = "original_frames"
|
30 |
OUTPUT_DIR = "outputs"
|
31 |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
|
32 |
+
os.makedirs(ORIGINAL_FRAMES_DIR, exist_ok=True)
|
33 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
34 |
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
|
35 |
+
os.chmod(ORIGINAL_FRAMES_DIR, 0o777)
|
36 |
os.chmod(OUTPUT_DIR, 0o777)
|
37 |
|
38 |
# Global variables
|
|
|
42 |
gps_coordinates: List[List[float]] = []
|
43 |
last_metrics: Dict[str, Any] = {}
|
44 |
frame_count: int = 0
|
45 |
+
SAVE_IMAGE_INTERVAL = 1
|
46 |
|
47 |
+
# Load model
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
49 |
model = YOLO('./data/best.pt').to(device)
|
50 |
if device == "cuda":
|
51 |
+
model.half()
|
52 |
+
print(f"Using {device}, model classes: {model.names}")
|
53 |
|
54 |
+
# Helper functions
|
55 |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
|
56 |
map_path = "map_temp.png"
|
57 |
plt.figure(figsize=(4, 4))
|
|
|
65 |
return map_path
|
66 |
|
67 |
def send_to_salesforce(data: Dict[str, Any]) -> None:
|
68 |
+
pass # Placeholder
|
69 |
|
70 |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
|
71 |
counts = Counter([det["label"] for det in detections])
|
|
|
78 |
def generate_line_chart() -> Optional[str]:
|
79 |
if not detected_counts:
|
80 |
return None
|
81 |
+
chart_path = "chart_temp.png"
|
82 |
plt.figure(figsize=(4, 2))
|
83 |
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
|
84 |
plt.title("Detections Over Time")
|
|
|
86 |
plt.ylabel("Count")
|
87 |
plt.grid(True)
|
88 |
plt.tight_layout()
|
|
|
89 |
plt.savefig(chart_path)
|
90 |
plt.close()
|
91 |
return chart_path
|
92 |
|
93 |
+
def create_zip_from_directory(dir_path: str, zip_filename: str) -> str:
|
94 |
+
zip_path = os.path.join(OUTPUT_DIR, zip_filename)
|
95 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
96 |
+
for root, _, files in os.walk(dir_path):
|
97 |
+
for file in files:
|
98 |
+
full_path = os.path.join(root, file)
|
99 |
+
zipf.write(full_path, arcname=file)
|
100 |
+
return zip_path
|
101 |
+
|
102 |
+
# Main function
|
103 |
def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
|
104 |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
|
105 |
frame_count = 0
|
|
|
109 |
log_entries.clear()
|
110 |
last_metrics = {}
|
111 |
|
112 |
+
for dir_ in [CAPTURED_FRAMES_DIR, ORIGINAL_FRAMES_DIR]:
|
113 |
+
for file in os.listdir(dir_):
|
114 |
+
os.remove(os.path.join(dir_, file))
|
115 |
+
|
116 |
if video is None:
|
117 |
log_entries.append("Error: No video uploaded")
|
118 |
+
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None
|
|
|
119 |
|
|
|
120 |
cap = cv2.VideoCapture(video)
|
121 |
if not cap.isOpened():
|
122 |
log_entries.append("Error: Could not open video file")
|
123 |
+
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None
|
|
|
124 |
|
125 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
126 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
127 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
128 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
output_path = "processed_output.mp4"
|
130 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (resize_width, resize_height))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
|
|
132 |
all_detections = []
|
133 |
frame_times = []
|
134 |
detection_frame_count = 0
|
135 |
+
start_time = time.time()
|
|
|
136 |
|
137 |
while True:
|
138 |
ret, frame = cap.read()
|
|
|
141 |
frame_count += 1
|
142 |
if frame_count % frame_skip != 0:
|
143 |
continue
|
|
|
|
|
144 |
|
145 |
+
frame = cv2.resize(frame, (resize_width, resize_height))
|
146 |
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
147 |
annotated_frame = results[0].plot()
|
148 |
|
149 |
+
# Save original frame
|
150 |
+
original_path = os.path.join(ORIGINAL_FRAMES_DIR, f"frame_{frame_count}.jpg")
|
151 |
+
cv2.imwrite(original_path, frame)
|
152 |
+
|
153 |
frame_detections = []
|
154 |
for detection in results[0].boxes:
|
155 |
cls = int(detection.cls)
|
156 |
conf = float(detection.conf)
|
157 |
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
158 |
label = model.names[cls]
|
159 |
+
frame_detections.append({"label": label, "box": box, "conf": conf})
|
|
|
|
|
|
|
160 |
|
161 |
if frame_detections:
|
162 |
detection_frame_count += 1
|
163 |
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
|
164 |
+
captured_path = os.path.join(CAPTURED_FRAMES_DIR, f"frame_{frame_count}.jpg")
|
165 |
+
cv2.imwrite(captured_path, annotated_frame)
|
166 |
+
detected_issues.append(captured_path)
|
167 |
+
if len(detected_issues) > 100:
|
168 |
+
detected_issues.pop(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
out.write(annotated_frame)
|
171 |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
172 |
gps_coordinates.append(gps_coord)
|
173 |
for det in frame_detections:
|
174 |
det["gps"] = gps_coord
|
175 |
all_detections.extend(frame_detections)
|
176 |
+
detected_counts.append(len(frame_detections))
|
177 |
+
frame_time = (time.time() - start_time) * 1000
|
178 |
frame_times.append(frame_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
last_metrics = update_metrics(all_detections)
|
181 |
send_to_salesforce({
|
182 |
"detections": all_detections,
|
183 |
"metrics": last_metrics,
|
184 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
185 |
"frame_count": frame_count,
|
186 |
"gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
|
187 |
})
|
|
|
189 |
cap.release()
|
190 |
out.release()
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
chart_path = generate_line_chart()
|
193 |
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
194 |
+
originals_zip = create_zip_from_directory(ORIGINAL_FRAMES_DIR, "original_images.zip")
|
195 |
+
annotated_zip = create_zip_from_directory(CAPTURED_FRAMES_DIR, "annotated_images.zip")
|
196 |
|
197 |
return (
|
198 |
output_path,
|
|
|
200 |
"\n".join(log_entries[-10:]),
|
201 |
detected_issues,
|
202 |
chart_path,
|
203 |
+
map_path,
|
204 |
+
originals_zip,
|
205 |
+
annotated_zip
|
206 |
)
|
207 |
|
208 |
+
# Gradio UI
|
209 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
|
210 |
+
gr.Markdown("# Crack and Pothole Detection Dashboard")
|
211 |
+
|
212 |
with gr.Row():
|
213 |
with gr.Column(scale=3):
|
214 |
video_input = gr.Video(label="Upload Video")
|
|
|
218 |
process_btn = gr.Button("Process Video", variant="primary")
|
219 |
with gr.Column(scale=1):
|
220 |
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
|
221 |
+
|
222 |
with gr.Row():
|
223 |
video_output = gr.Video(label="Processed Video")
|
224 |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
225 |
+
|
226 |
with gr.Row():
|
227 |
chart_output = gr.Image(label="Detection Trend")
|
228 |
map_output = gr.Image(label="Issue Locations Map")
|
229 |
+
|
230 |
with gr.Row():
|
231 |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
232 |
|
233 |
+
with gr.Row():
|
234 |
+
originals_zip_out = gr.File(label="Download Original Images (ZIP)")
|
235 |
+
annotated_zip_out = gr.File(label="Download Annotated Images (ZIP)")
|
236 |
+
|
237 |
process_btn.click(
|
238 |
process_video,
|
239 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
240 |
+
outputs=[
|
241 |
+
video_output,
|
242 |
+
metrics_output,
|
243 |
+
logs_output,
|
244 |
+
issue_gallery,
|
245 |
+
chart_output,
|
246 |
+
map_output,
|
247 |
+
originals_zip_out,
|
248 |
+
annotated_zip_out
|
249 |
+
]
|
250 |
)
|
251 |
|
252 |
if __name__ == "__main__":
|
253 |
+
iface.launch()
|