Spaces:
Sleeping
Sleeping
import torch | |
import cv2 | |
import numpy as np | |
# Load your model (assuming it is a PyTorch model) | |
model = torch.load('.data/model.pt') | |
model.eval() | |
# Open video file (input video) | |
input_video = cv2.VideoCapture('input_video.mp4') | |
# Get the frame width, height, and frames per second (fps) from the input video | |
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = input_video.get(cv2.CAP_PROP_FPS) | |
# Define the output video writer | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You can change this to any codec | |
output_video = cv2.VideoWriter('output_video.mp4', fourcc, fps, (frame_width, frame_height)) | |
while True: | |
# Read a frame from the input video | |
ret, frame = input_video.read() | |
if not ret: | |
break # End of video | |
# Preprocess the frame if necessary (depends on your model) | |
# For example, convert to tensor and normalize if required | |
frame_tensor = torch.tensor(frame).float().unsqueeze(0) # Add batch dimension | |
# Pass the frame through the model | |
with torch.no_grad(): | |
output = model(frame_tensor) # Adjust based on your model's requirements | |
# Postprocess the output if necessary (depends on your model's output format) | |
output_frame = output.squeeze(0).cpu().numpy() # Remove batch dimension and convert to NumPy | |
# Convert the model output to a valid image format (if necessary) | |
output_frame = np.uint8(output_frame) | |
# Write the frame to the output video | |
output_video.write(output_frame) | |
# Release resources | |
input_video.release() | |
output_video.release() | |
cv2.destroyAllWindows() | |