Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
from ultralytics import YOLO | |
import time | |
import os | |
import json | |
import logging | |
import matplotlib.pyplot as plt | |
from datetime import datetime | |
from collections import Counter | |
from typing import List, Dict, Any, Optional | |
# Set up logging | |
logging.basicConfig( | |
filename="app.log", | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
# Directories | |
CAPTURED_FRAMES_DIR = "captured_frames" | |
OUTPUT_DIR = "outputs" | |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True) | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
os.chmod(CAPTURED_FRAMES_DIR, 0o777) | |
os.chmod(OUTPUT_DIR, 0o777) | |
# Global variables | |
log_entries: List[str] = [] | |
detected_counts: List[int] = [] | |
detected_issues: List[str] = [] | |
gps_coordinates: List[List[float]] = [] | |
last_metrics: Dict[str, Any] = {} | |
frame_count: int = 0 | |
# Debug: Check environment | |
print(f"Torch version: {torch.__version__}") | |
print(f"Gradio version: {gr.__version__}") | |
print(f"Ultralytics version: {YOLO.__version__}") | |
print(f"CUDA available: {torch.cuda.is_available()}") | |
# Load custom YOLO model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
model = YOLO('./data/best.pt').to(device) | |
if device == "cuda": | |
model.half() # Use half-precision (FP16) | |
print(f"Model classes: {model.names}") | |
# Mock service functions (replace with actual implementations if available) | |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str: | |
"""Mock map generation: returns a placeholder image path.""" | |
map_path = "map_temp.png" | |
plt.figure(figsize=(4, 4)) | |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points') | |
plt.title("Mock Issue Locations Map") | |
plt.xlabel("Longitude") | |
plt.ylabel("Latitude") | |
plt.legend() | |
plt.savefig(map_path) | |
plt.close() | |
return map_path | |
def send_to_salesforce(data: Dict[str, Any]) -> None: | |
"""Mock Salesforce dispatch: logs data.""" | |
logging.info(f"Mock Salesforce dispatch: {json.dumps(data, indent=2)}") | |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]: | |
"""Compute detection metrics.""" | |
counts = Counter([det["label"] for det in detections]) | |
return { | |
"items": [{"type": k, "count": v} for k, v in counts.items()], | |
"total_detections": len(detections), | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
def generate_line_chart() -> Optional[str]: | |
"""Generate detection trend chart.""" | |
if not detected_counts: | |
return None | |
plt.figure(figsize=(4, 2)) | |
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00') | |
plt.title("Detections Over Time") | |
plt.xlabel("Frame") | |
plt.ylabel("Count") | |
plt.grid(True) | |
plt.tight_layout() | |
chart_path = "chart_temp.png" | |
plt.savefig(chart_path) | |
plt.close() | |
return chart_path | |
def process_video(video, resize_width=320, resize_height=240, frame_skip=5): | |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries | |
frame_count = 0 | |
detected_counts.clear() | |
detected_issues.clear() | |
gps_coordinates.clear() | |
log_entries.clear() | |
last_metrics = {} | |
if video is None: | |
log_entries.append("Error: No video uploaded") | |
logging.error("No video uploaded") | |
return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None | |
start_time = time.time() | |
cap = cv2.VideoCapture(video) | |
if not cap.isOpened(): | |
log_entries.append("Error: Could not open video file") | |
logging.error("Could not open video file") | |
return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
expected_duration = total_frames / fps | |
log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds") | |
logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds") | |
print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds") | |
out_width, out_height = resize_width, resize_height | |
output_path = "processed_output.mp4" | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height)) | |
processed_frames = 0 | |
all_detections = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
if frame_count % frame_skip != 0: | |
continue | |
processed_frames += 1 | |
print(f"Processing frame {frame_count}/{total_frames}") | |
frame = cv2.resize(frame, (out_width, out_height)) | |
results = model(frame, verbose=False, conf=0.5, iou=0.7) | |
annotated_frame = results[0].plot() | |
frame_detections = [] | |
for detection in results[0].boxes: | |
cls = int(detection.cls) | |
conf = float(detection.conf) | |
box = detection.xyxy[0].cpu().numpy().astype(int).tolist() # [x_min, y_min, x_max, y_max] | |
label = model.names[cls] | |
frame_detections.append({"label": label, "box": box, "conf": conf}) | |
log_entries.append(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}") | |
logging.info(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}") | |
if frame_detections: | |
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg") | |
cv2.imwrite(captured_frame_path, annotated_frame) | |
detected_issues.append(captured_frame_path) | |
if len(detected_issues) > 100: | |
detected_issues.pop(0) | |
frame_path = os.path.join(OUTPUT_DIR, f"frame_{frame_count:04d}.jpg") | |
cv2.imwrite(frame_path, annotated_frame) | |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)] # Simulated GPS | |
gps_coordinates.append(gps_coord) | |
for det in frame_detections: | |
det["gps"] = gps_coord | |
all_detections.extend(frame_detections) | |
out.write(annotated_frame) | |
if frame_skip > 1: | |
for _ in range(frame_skip - 1): | |
if frame_count + 1 <= total_frames: | |
out.write(annotated_frame) | |
frame_count += 1 | |
detected_counts.append(len(frame_detections)) | |
last_metrics = update_metrics(all_detections) | |
detection_summary = { | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"frame": frame_count, | |
"cracks": sum(1 for det in frame_detections if det["label"] == "crack"), | |
"potholes": sum(1 for det in frame_detections if det["label"] == "pothole"), | |
"gps": gps_coord, | |
"processing_time_ms": (time.time() - start_time) * 1000 / processed_frames if processed_frames else 0 | |
} | |
log_entries.append(json.dumps(detection_summary, indent=2)) | |
logging.info(json.dumps(detection_summary, indent=2)) | |
if len(log_entries) > 100: | |
log_entries.pop(0) | |
send_to_salesforce({ | |
"detections": frame_detections, | |
"metrics": last_metrics, | |
"timestamp": detection_summary["timestamp"], | |
"frame_count": frame_count, | |
"gps_coordinates": gps_coord | |
}) | |
cap.release() | |
out.release() | |
cap = cv2.VideoCapture(output_path) | |
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
output_fps = cap.get(cv2.CAP_PROP_FPS) | |
output_duration = output_frames / output_fps | |
cap.release() | |
log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds") | |
logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds") | |
print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds") | |
print(f"Processing time: {time.time() - start_time:.2f} seconds") | |
chart_path = generate_line_chart() | |
map_path = generate_map(gps_coordinates[-5:], all_detections) | |
return ( | |
output_path, | |
json.dumps(last_metrics, indent=2), | |
"\n".join(log_entries[-10:]), | |
detected_issues, | |
chart_path, | |
map_path | |
) | |
# Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface: | |
gr.Markdown("# Crack and Pothole Detection Dashboard") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
video_input = gr.Video(label="Upload Video") | |
width_slider = gr.Slider(320, 1280, value=320, label="Output Width", step=1) | |
height_slider = gr.Slider(240, 720, value=240, label="Output Height", step=1) | |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1) | |
process_btn = gr.Button("Process Video", variant="primary") | |
with gr.Column(scale=1): | |
metrics_output = gr.Textbox(label="Detection Metrics", lines=10, interactive=False) | |
with gr.Row(): | |
video_output = gr.Video(label="Processed Video") | |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto") | |
with gr.Row(): | |
chart_output = gr.Image(label="Detection Trend") | |
map_output = gr.Image(label="Issue Locations Map") | |
with gr.Row(): | |
logs_output = gr.Textbox(label="Logs", lines=8, interactive=False) | |
process_btn.click( | |
process_video, | |
inputs=[video_input, width_slider, height_slider, skip_slider], | |
outputs=[video_output, metrics_output, logs_output, issue_gallery, chart_output, map_output] | |
) | |
if __name__ == "__main__": | |
iface.launch() |