File size: 10,071 Bytes
6cb50ff
a03d512
fc635eb
177b569
486823b
d552a3c
486823b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d616d
 
 
 
486823b
99d616d
b739bed
d552a3c
c0cf5bc
99d616d
 
486823b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cb50ff
99d616d
486823b
 
 
 
d552a3c
99d616d
 
486823b
 
 
 
7a25fd2
 
99d616d
7a25fd2
d552a3c
486823b
 
d552a3c
486823b
d552a3c
99d616d
486823b
d552a3c
486823b
d552a3c
486823b
 
a03d512
99d616d
7a25fd2
99d616d
 
d552a3c
 
 
7a25fd2
486823b
d552a3c
486823b
99d616d
486823b
 
d552a3c
 
 
486823b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d616d
d552a3c
 
 
 
 
486823b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d616d
 
486823b
d552a3c
 
 
 
 
486823b
 
 
d552a3c
 
486823b
 
 
 
 
 
 
 
 
 
 
 
99d616d
 
486823b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d616d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import cv2
import torch
import gradio as gr
import numpy as np
from ultralytics import YOLO
import time
import os
import json
import logging
import matplotlib.pyplot as plt
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional

# Set up logging
logging.basicConfig(
    filename="app.log",
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s"
)

# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)

# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0

# Debug: Check environment
print(f"Torch version: {torch.__version__}")
print(f"Gradio version: {gr.__version__}")
print(f"Ultralytics version: {YOLO.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")

# Load custom YOLO model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
    model.half()  # Use half-precision (FP16)
print(f"Model classes: {model.names}")

# Mock service functions (replace with actual implementations if available)
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
    """Mock map generation: returns a placeholder image path."""
    map_path = "map_temp.png"
    plt.figure(figsize=(4, 4))
    plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
    plt.title("Mock Issue Locations Map")
    plt.xlabel("Longitude")
    plt.ylabel("Latitude")
    plt.legend()
    plt.savefig(map_path)
    plt.close()
    return map_path

def send_to_salesforce(data: Dict[str, Any]) -> None:
    """Mock Salesforce dispatch: logs data."""
    logging.info(f"Mock Salesforce dispatch: {json.dumps(data, indent=2)}")

def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
    """Compute detection metrics."""
    counts = Counter([det["label"] for det in detections])
    return {
        "items": [{"type": k, "count": v} for k, v in counts.items()],
        "total_detections": len(detections),
        "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    }

def generate_line_chart() -> Optional[str]:
    """Generate detection trend chart."""
    if not detected_counts:
        return None
    plt.figure(figsize=(4, 2))
    plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
    plt.title("Detections Over Time")
    plt.xlabel("Frame")
    plt.ylabel("Count")
    plt.grid(True)
    plt.tight_layout()
    chart_path = "chart_temp.png"
    plt.savefig(chart_path)
    plt.close()
    return chart_path

def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
    global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
    frame_count = 0
    detected_counts.clear()
    detected_issues.clear()
    gps_coordinates.clear()
    log_entries.clear()
    last_metrics = {}

    if video is None:
        log_entries.append("Error: No video uploaded")
        logging.error("No video uploaded")
        return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None

    start_time = time.time()
    cap = cv2.VideoCapture(video)
    if not cap.isOpened():
        log_entries.append("Error: Could not open video file")
        logging.error("Could not open video file")
        return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None

    frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    expected_duration = total_frames / fps
    log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
    logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
    print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")

    out_width, out_height = resize_width, resize_height
    output_path = "processed_output.mp4"
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height))

    processed_frames = 0
    all_detections = []

    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frame_count += 1
        if frame_count % frame_skip != 0:
            continue
        processed_frames += 1
        print(f"Processing frame {frame_count}/{total_frames}")

        frame = cv2.resize(frame, (out_width, out_height))
        results = model(frame, verbose=False, conf=0.5, iou=0.7)
        annotated_frame = results[0].plot()

        frame_detections = []
        for detection in results[0].boxes:
            cls = int(detection.cls)
            conf = float(detection.conf)
            box = detection.xyxy[0].cpu().numpy().astype(int).tolist()  # [x_min, y_min, x_max, y_max]
            label = model.names[cls]
            frame_detections.append({"label": label, "box": box, "conf": conf})
            log_entries.append(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
            logging.info(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")

        if frame_detections:
            captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg")
            cv2.imwrite(captured_frame_path, annotated_frame)
            detected_issues.append(captured_frame_path)
            if len(detected_issues) > 100:
                detected_issues.pop(0)

        frame_path = os.path.join(OUTPUT_DIR, f"frame_{frame_count:04d}.jpg")
        cv2.imwrite(frame_path, annotated_frame)

        gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]  # Simulated GPS
        gps_coordinates.append(gps_coord)
        for det in frame_detections:
            det["gps"] = gps_coord
        all_detections.extend(frame_detections)

        out.write(annotated_frame)
        if frame_skip > 1:
            for _ in range(frame_skip - 1):
                if frame_count + 1 <= total_frames:
                    out.write(annotated_frame)
                    frame_count += 1

        detected_counts.append(len(frame_detections))
        last_metrics = update_metrics(all_detections)
        detection_summary = {
            "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "frame": frame_count,
            "cracks": sum(1 for det in frame_detections if det["label"] == "crack"),
            "potholes": sum(1 for det in frame_detections if det["label"] == "pothole"),
            "gps": gps_coord,
            "processing_time_ms": (time.time() - start_time) * 1000 / processed_frames if processed_frames else 0
        }
        log_entries.append(json.dumps(detection_summary, indent=2))
        logging.info(json.dumps(detection_summary, indent=2))
        if len(log_entries) > 100:
            log_entries.pop(0)

        send_to_salesforce({
            "detections": frame_detections,
            "metrics": last_metrics,
            "timestamp": detection_summary["timestamp"],
            "frame_count": frame_count,
            "gps_coordinates": gps_coord
        })

    cap.release()
    out.release()

    cap = cv2.VideoCapture(output_path)
    output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    output_fps = cap.get(cv2.CAP_PROP_FPS)
    output_duration = output_frames / output_fps
    cap.release()

    log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
    print(f"Processing time: {time.time() - start_time:.2f} seconds")

    chart_path = generate_line_chart()
    map_path = generate_map(gps_coordinates[-5:], all_detections)

    return (
        output_path,
        json.dumps(last_metrics, indent=2),
        "\n".join(log_entries[-10:]),
        detected_issues,
        chart_path,
        map_path
    )

# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
    gr.Markdown("# Crack and Pothole Detection Dashboard")
    with gr.Row():
        with gr.Column(scale=3):
            video_input = gr.Video(label="Upload Video")
            width_slider = gr.Slider(320, 1280, value=320, label="Output Width", step=1)
            height_slider = gr.Slider(240, 720, value=240, label="Output Height", step=1)
            skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
            process_btn = gr.Button("Process Video", variant="primary")
        with gr.Column(scale=1):
            metrics_output = gr.Textbox(label="Detection Metrics", lines=10, interactive=False)
    with gr.Row():
        video_output = gr.Video(label="Processed Video")
        issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto")
    with gr.Row():
        chart_output = gr.Image(label="Detection Trend")
        map_output = gr.Image(label="Issue Locations Map")
    with gr.Row():
        logs_output = gr.Textbox(label="Logs", lines=8, interactive=False)

    process_btn.click(
        process_video,
        inputs=[video_input, width_slider, height_slider, skip_slider],
        outputs=[video_output, metrics_output, logs_output, issue_gallery, chart_output, map_output]
    )

if __name__ == "__main__":
    iface.launch()