Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
from ultralytics import YOLO | |
# Load YOLOv8 model and set device (GPU if available) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = YOLO('./data/best.pt') # Path to your model | |
model.to(device) | |
# Define the function that processes the uploaded video | |
def process_video(video): | |
# video is now the file path string, not a file object | |
input_video = cv2.VideoCapture(video) # Directly pass the path to cv2.VideoCapture | |
# Get frame width, height, and fps from input video | |
frame_width = int(input_video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(input_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = input_video.get(cv2.CAP_PROP_FPS) | |
# Resize to reduce computation (optional) | |
new_width, new_height = 640, 480 # Resize to 640x480 resolution | |
frame_width, frame_height = new_width, new_height | |
# Create a VideoWriter object to write processed frames to an output file | |
output_video_path = "processed_output.mp4" | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 format | |
output_video = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height)) | |
frame_skip = 10 # Skip 10 frames between each processed frame | |
frame_count = 0 | |
while True: | |
# Read a frame from the video | |
ret, frame = input_video.read() | |
if not ret: | |
break # End of video | |
frame_count += 1 | |
if frame_count % frame_skip != 0: | |
continue # Skip frames | |
# Resize the frame to reduce computational load | |
frame = cv2.resize(frame, (new_width, new_height)) | |
# Perform inference on the frame | |
results = model(frame) # Automatically uses GPU if available | |
# The results object contains annotations for the frame | |
annotated_frame = results[0].plot() # Plot the frame with bounding boxes | |
# Write the annotated frame to the output video | |
output_video.write(annotated_frame) | |
# Release resources | |
input_video.release() | |
output_video.release() | |
# Return the processed video file path | |
return output_video_path | |
# Create a Gradio interface for video upload | |
iface = gr.Interface(fn=process_video, | |
inputs=gr.Video(label="Upload Video"), # Updated line | |
outputs=gr.Video(label="Processed Video"), # This will display the output video directly | |
title="YOLOv8 Object Detection on Video", | |
description="Upload a video for object detection using YOLOv8") | |
# Launch the interface | |
iface.launch() | |