Spaces:
Sleeping
Sleeping
base_url_gone
Browse files- analyzer.py +0 -5
- app.py +1 -1
- chatbot_page.py +0 -2
- repo_explorer.py +0 -1
analyzer.py
CHANGED
@@ -16,7 +16,6 @@ def analyze_code(code: str) -> str:
|
|
16 |
"""
|
17 |
from openai import OpenAI
|
18 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
19 |
-
client.base_url = os.getenv("base_url")
|
20 |
system_prompt = (
|
21 |
"You are a highly precise and strict JSON generator. Analyze the code given to you. "
|
22 |
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
@@ -236,7 +235,6 @@ def analyze_code_chunk(code: str, user_requirements: str = "") -> str:
|
|
236 |
"""
|
237 |
from openai import OpenAI
|
238 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
239 |
-
client.base_url = os.getenv("base_url")
|
240 |
|
241 |
# Build the user requirements section
|
242 |
requirements_section = ""
|
@@ -271,7 +269,6 @@ def aggregate_chunk_analyses(chunk_jsons: list, user_requirements: str = "") ->
|
|
271 |
"""
|
272 |
from openai import OpenAI
|
273 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
274 |
-
client.base_url = os.getenv("base_url")
|
275 |
|
276 |
# Build the user requirements section
|
277 |
requirements_section = ""
|
@@ -329,7 +326,6 @@ def analyze_repo_chunk_for_context(chunk: str, repo_id: str) -> str:
|
|
329 |
try:
|
330 |
from openai import OpenAI
|
331 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
332 |
-
client.base_url = os.getenv("base_url")
|
333 |
|
334 |
context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.
|
335 |
|
@@ -385,7 +381,6 @@ def create_repo_context_summary(repo_content: str, repo_id: str) -> str:
|
|
385 |
try:
|
386 |
from openai import OpenAI
|
387 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
388 |
-
client.base_url = os.getenv("base_url")
|
389 |
|
390 |
final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.
|
391 |
|
|
|
16 |
"""
|
17 |
from openai import OpenAI
|
18 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
19 |
system_prompt = (
|
20 |
"You are a highly precise and strict JSON generator. Analyze the code given to you. "
|
21 |
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
|
|
|
235 |
"""
|
236 |
from openai import OpenAI
|
237 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
238 |
|
239 |
# Build the user requirements section
|
240 |
requirements_section = ""
|
|
|
269 |
"""
|
270 |
from openai import OpenAI
|
271 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
272 |
|
273 |
# Build the user requirements section
|
274 |
requirements_section = ""
|
|
|
326 |
try:
|
327 |
from openai import OpenAI
|
328 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
329 |
|
330 |
context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.
|
331 |
|
|
|
381 |
try:
|
382 |
from openai import OpenAI
|
383 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
384 |
|
385 |
final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.
|
386 |
|
app.py
CHANGED
@@ -125,7 +125,7 @@ Selected repositories:"""
|
|
125 |
try:
|
126 |
from openai import OpenAI
|
127 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
128 |
-
client.base_url = os.getenv("base_url")
|
129 |
|
130 |
response = client.chat.completions.create(
|
131 |
model="openai/gpt-4.1-nano",
|
|
|
125 |
try:
|
126 |
from openai import OpenAI
|
127 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
128 |
+
# client.base_url = os.getenv("base_url")
|
129 |
|
130 |
response = client.chat.completions.create(
|
131 |
model="openai/gpt-4.1-nano",
|
chatbot_page.py
CHANGED
@@ -18,7 +18,6 @@ conversation_history = []
|
|
18 |
def chat_with_user(user_message, history):
|
19 |
from openai import OpenAI
|
20 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
21 |
-
client.base_url = os.getenv("base_url")
|
22 |
# Build the message list for the LLM
|
23 |
messages = [
|
24 |
{"role": "system", "content": CHATBOT_SYSTEM_PROMPT}
|
@@ -41,7 +40,6 @@ def chat_with_user(user_message, history):
|
|
41 |
def extract_keywords_from_conversation(history):
|
42 |
from openai import OpenAI
|
43 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
44 |
-
client.base_url = os.getenv("base_url")
|
45 |
# Combine all user and assistant messages into a single string
|
46 |
conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]])
|
47 |
system_prompt = (
|
|
|
18 |
def chat_with_user(user_message, history):
|
19 |
from openai import OpenAI
|
20 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
21 |
# Build the message list for the LLM
|
22 |
messages = [
|
23 |
{"role": "system", "content": CHATBOT_SYSTEM_PROMPT}
|
|
|
40 |
def extract_keywords_from_conversation(history):
|
41 |
from openai import OpenAI
|
42 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
43 |
# Combine all user and assistant messages into a single string
|
44 |
conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]])
|
45 |
system_prompt = (
|
repo_explorer.py
CHANGED
@@ -276,7 +276,6 @@ Answer the user's question based on your comprehensive knowledge of this reposit
|
|
276 |
try:
|
277 |
from openai import OpenAI
|
278 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
279 |
-
client.base_url = os.getenv("base_url")
|
280 |
|
281 |
response = client.chat.completions.create(
|
282 |
model="openai/gpt-4.1-nano",
|
|
|
276 |
try:
|
277 |
from openai import OpenAI
|
278 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
|
|
279 |
|
280 |
response = client.chat.completions.create(
|
281 |
model="openai/gpt-4.1-nano",
|