Spaces:
Sleeping
Sleeping
fixed_openaiAPI
Browse files- analyzer.py +5 -5
- app.py +1 -1
- chatbot_page.py +2 -2
- repo_explorer.py +1 -1
analyzer.py
CHANGED
@@ -26,7 +26,7 @@ def analyze_code(code: str) -> str:
|
|
26 |
"{\n 'strength': '...', \n 'weaknesses': '...', \n 'speciality': '...', \n 'relevance rating': 'high'\n}"
|
27 |
)
|
28 |
response = client.chat.completions.create(
|
29 |
-
model="
|
30 |
messages=[
|
31 |
{"role": "system", "content": system_prompt},
|
32 |
{"role": "user", "content": code}
|
@@ -254,7 +254,7 @@ def analyze_code_chunk(code: str, user_requirements: str = "") -> str:
|
|
254 |
)
|
255 |
|
256 |
response = client.chat.completions.create(
|
257 |
-
model="
|
258 |
messages=[
|
259 |
{"role": "system", "content": chunk_prompt},
|
260 |
{"role": "user", "content": code}
|
@@ -288,7 +288,7 @@ def aggregate_chunk_analyses(chunk_jsons: list, user_requirements: str = "") ->
|
|
288 |
)
|
289 |
user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons)
|
290 |
response = client.chat.completions.create(
|
291 |
-
model="
|
292 |
messages=[
|
293 |
{"role": "system", "content": aggregation_prompt},
|
294 |
{"role": "user", "content": user_content}
|
@@ -344,7 +344,7 @@ Repository chunk:
|
|
344 |
Provide a clear, conversational summary in 2-3 paragraphs:"""
|
345 |
|
346 |
response = client.chat.completions.create(
|
347 |
-
model="
|
348 |
messages=[
|
349 |
{"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
|
350 |
{"role": "user", "content": context_prompt}
|
@@ -397,7 +397,7 @@ Create a well-structured overview covering:
|
|
397 |
Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
|
398 |
|
399 |
response = client.chat.completions.create(
|
400 |
-
model="
|
401 |
messages=[
|
402 |
{"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
|
403 |
{"role": "user", "content": final_prompt}
|
|
|
26 |
"{\n 'strength': '...', \n 'weaknesses': '...', \n 'speciality': '...', \n 'relevance rating': 'high'\n}"
|
27 |
)
|
28 |
response = client.chat.completions.create(
|
29 |
+
model="gpt-4.1-nano", # Updated model ID
|
30 |
messages=[
|
31 |
{"role": "system", "content": system_prompt},
|
32 |
{"role": "user", "content": code}
|
|
|
254 |
)
|
255 |
|
256 |
response = client.chat.completions.create(
|
257 |
+
model="gpt-4.1-nano",
|
258 |
messages=[
|
259 |
{"role": "system", "content": chunk_prompt},
|
260 |
{"role": "user", "content": code}
|
|
|
288 |
)
|
289 |
user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons)
|
290 |
response = client.chat.completions.create(
|
291 |
+
model="gpt-4.1-nano",
|
292 |
messages=[
|
293 |
{"role": "system", "content": aggregation_prompt},
|
294 |
{"role": "user", "content": user_content}
|
|
|
344 |
Provide a clear, conversational summary in 2-3 paragraphs:"""
|
345 |
|
346 |
response = client.chat.completions.create(
|
347 |
+
model="gpt-4.1-nano",
|
348 |
messages=[
|
349 |
{"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
|
350 |
{"role": "user", "content": context_prompt}
|
|
|
397 |
Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
|
398 |
|
399 |
response = client.chat.completions.create(
|
400 |
+
model="gpt-4.1-nano",
|
401 |
messages=[
|
402 |
{"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
|
403 |
{"role": "user", "content": final_prompt}
|
app.py
CHANGED
@@ -128,7 +128,7 @@ Selected repositories:"""
|
|
128 |
# client.base_url = os.getenv("base_url")
|
129 |
|
130 |
response = client.chat.completions.create(
|
131 |
-
model="
|
132 |
messages=[
|
133 |
{"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
|
134 |
{"role": "user", "content": prompt}
|
|
|
128 |
# client.base_url = os.getenv("base_url")
|
129 |
|
130 |
response = client.chat.completions.create(
|
131 |
+
model="gpt-4.1-nano",
|
132 |
messages=[
|
133 |
{"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
|
134 |
{"role": "user", "content": prompt}
|
chatbot_page.py
CHANGED
@@ -28,7 +28,7 @@ def chat_with_user(user_message, history):
|
|
28 |
messages.append({"role": "assistant", "content": msg[1]})
|
29 |
messages.append({"role": "user", "content": user_message})
|
30 |
response = client.chat.completions.create(
|
31 |
-
model="
|
32 |
messages=messages,
|
33 |
max_tokens=256,
|
34 |
temperature=0.7
|
@@ -54,7 +54,7 @@ def extract_keywords_from_conversation(history):
|
|
54 |
"Conversation:\n" + conversation + "\n\nExtract about 5 keywords for Hugging Face repo search."
|
55 |
)
|
56 |
response = client.chat.completions.create(
|
57 |
-
model="
|
58 |
messages=[
|
59 |
{"role": "system", "content": system_prompt},
|
60 |
{"role": "user", "content": user_prompt}
|
|
|
28 |
messages.append({"role": "assistant", "content": msg[1]})
|
29 |
messages.append({"role": "user", "content": user_message})
|
30 |
response = client.chat.completions.create(
|
31 |
+
model="gpt-4.1-nano",
|
32 |
messages=messages,
|
33 |
max_tokens=256,
|
34 |
temperature=0.7
|
|
|
54 |
"Conversation:\n" + conversation + "\n\nExtract about 5 keywords for Hugging Face repo search."
|
55 |
)
|
56 |
response = client.chat.completions.create(
|
57 |
+
model="gpt-4.1-nano",
|
58 |
messages=[
|
59 |
{"role": "system", "content": system_prompt},
|
60 |
{"role": "user", "content": user_prompt}
|
repo_explorer.py
CHANGED
@@ -278,7 +278,7 @@ Answer the user's question based on your comprehensive knowledge of this reposit
|
|
278 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
279 |
|
280 |
response = client.chat.completions.create(
|
281 |
-
model="
|
282 |
messages=[
|
283 |
{"role": "system", "content": repo_system_prompt},
|
284 |
{"role": "user", "content": user_message}
|
|
|
278 |
client = OpenAI(api_key=os.getenv("OpenAI_API"))
|
279 |
|
280 |
response = client.chat.completions.create(
|
281 |
+
model="gpt-4.1-nano",
|
282 |
messages=[
|
283 |
{"role": "system", "content": repo_system_prompt},
|
284 |
{"role": "user", "content": user_message}
|