File size: 8,368 Bytes
1f5cba5
 
0e29657
 
1f5cba5
 
 
9fb6d05
51b14d9
3563dd6
0e29657
 
 
 
 
 
66102de
0e29657
 
 
 
 
 
 
9d6ba16
0e29657
 
 
 
1f5cba5
0e29657
1f5cba5
0e29657
 
1f5cba5
66102de
0e29657
 
 
1f5cba5
0e29657
 
 
1f5cba5
0e29657
9d6ba16
0e29657
 
 
 
 
 
 
7dbc634
 
 
 
 
 
 
 
 
0e29657
 
 
 
 
1f5cba5
7dbc634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e29657
 
 
7dbc634
0e29657
65abbbc
 
 
 
 
 
 
 
 
7fb0070
 
92c94e2
7fb0070
92c94e2
7fb0070
 
 
09b1a3d
 
 
 
 
7fb0070
 
09b1a3d
 
7fb0070
09b1a3d
 
 
 
 
7fb0070
66102de
7fb0070
 
 
 
 
09b1a3d
 
 
 
 
 
 
 
 
7fb0070
09b1a3d
7fb0070
 
9d6ba16
7fb0070
 
 
a59a680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# tools.py

import pandas as pd
from langchain_community.tools import DuckDuckGoSearchRun
from pathlib import Path
from PIL import Image
import pytesseract
from state import AgentState
from langchain.schema import HumanMessage 
import regex as re
def web_search_tool(state: AgentState) -> AgentState:
    """
    Expects: state["web_search_query"] is a non‐empty string.
    Returns: {"web_search_query": None, "web_search_result": <string>}
    We also clear web_search_query so we don’t loop forever.
    """
    print("reached web search tool")
    query = state.get("web_search_query", "")
    if not query:
        return {}  # nothing to do
    
    # Run DuckDuckGo
    ddg = DuckDuckGoSearchRun()
    result_text = ddg.run(query)
    print(f"web_search_result: {result_text}")
    return {
        "web_search_query": None,
        "web_search_result": result_text
    }

def ocr_image_tool(state: AgentState) -> AgentState:
    """
    Expects: state["ocr_path"] is a path to an image file.
    Returns: {"ocr_path": None, "ocr_result": <string>}.
    """
    print("reached ocr image tool")
    path = state.get("ocr_path", "")
    if not path:
        return {}
    try:
        img = Image.open(path)
        text = pytesseract.image_to_string(img)
        text = text.strip() or "(no visible text)"
    except Exception as e:
        text = f"Error during OCR: {e}"
    print(f"ocr_result: {text}")
    return {
        "ocr_path": None,
        "ocr_result": text
    }

def parse_excel_tool(state: AgentState) -> AgentState:
    """
    Attempts to read an actual .xlsx file at state["excel_path"]. If the file isn’t found,
    scans the conversation history for a Markdown‐style table and returns that instead.
    Returns:
      {
        "excel_path": None,
        "excel_sheet_name": None,
        "excel_result": "<either CSV‐like text or extracted Markdown table>"
      }
    If neither a real file nor a table block is found, returns an error message.
    """
    path = state.get("excel_path", "")
    sheet = state.get("excel_sheet_name", "")
    if not path:
        return {}

    # 1) Try reading the real file first
    if os.path.exists(path):
        try:
            xls = pd.ExcelFile(path)
            if sheet and sheet in xls.sheet_names:
                df = pd.read_excel(xls, sheet_name=sheet)
            else:
                df = pd.read_excel(xls, sheet_name=xls.sheet_names[0])
            records = df.to_dict(orient="records")
            text = str(records)
            return {
                "excel_path": None,
                "excel_sheet_name": None,
                "excel_result": text
            }
        except Exception as e:
            # If there's an I/O or parsing error, fall through to table‐extraction
            print(f">>> parse_excel_tool: Error reading Excel file {path}: {e}")

    # 2) Fallback: extract a Markdown table from any HumanMessage in state["messages"]
    messages = state.get("messages", [])
    table_lines = []
    collecting = False

    for msg in messages:
        if isinstance(msg, HumanMessage):
            for line in msg.content.splitlines():
                # Start collecting when we see the first table header row
                if re.match(r"^\s*\|\s*[-A-Za-z0-9]", line):
                    collecting = True
                if collecting:
                    if not re.match(r"^\s*\|", line):
                        # stop when the block ends (blank line or non‐table line)
                        collecting = False
                        break
                    table_lines.append(line)
            if table_lines:
                break

    if not table_lines:
        return {
            "excel_path": None,
            "excel_sheet_name": None,
            "excel_result": "Error: No Excel file found and no Markdown table detected in prompt."
        }

    # Remove any separator rows like "| ---- | ---- |"
    clean_rows = [row for row in table_lines if not re.match(r"^\s*\|\s*-+", row)]
    table_block = "\n".join(clean_rows).strip()

    return {
        "excel_path": None,
        "excel_sheet_name": None,
        "excel_result": table_block
    }

def run_tools(state: AgentState, tool_out: AgentState) -> AgentState:
    """
    Merges whatever partial state the tool wrapper returned (tool_out)
    into the main state. That is, combine previous keys with new keys:
      new_state = { **state, **tool_out }.
    This node should be wired as its own graph node, not as a transition function.
    """
    new_state = {**state, **tool_out}
    return new_state


import os





import os
import openai
from state import AgentState

def audio_transcriber_tool(state: AgentState) -> AgentState:
    """
    LangGraph tool for transcribing audio via OpenAI’s hosted Whisper API.
    Expects: state["audio_path"] to be a valid path to a .wav/.mp3/.m4a file.
    Returns:
      {
        "audio_path": None,
        "transcript": "<transcribed text or error message>"
      }
    If no valid audio_path is provided, returns {}.
    """
    print("reached audio transcriber tool")
    path = state.get("audio_path", "")
    if not path or not os.path.exists(path):
        return {}

    try:
        openai.api_key = os.getenv("OPENAI_API_KEY")
        if not openai.api_key:
            raise RuntimeError("OPENAI_API_KEY is not set in environment.")

        with open(path, "rb") as audio_file:
            # For OpenAI Python library v0.27.0+:
            response = openai.Audio.transcribe("whisper-1", audio_file)
            # If using an older OpenAI library, use:
            # response = openai.Audio.create_transcription(file=audio_file, model="whisper-1")

        text = response["text"].strip()
    except Exception as e:
        text = f"Error during transcription: {e}"
    print(f"transcript: {text}")
    return {
        "audio_path": None,
        "transcript": text
    }

# tools.py

import re
import requests
from state import AgentState

def wikipedia_search_tool(state: AgentState) -> AgentState:
    """
    LangGraph wrapper for searching Wikipedia.
    Expects: state["wiki_query"] to be a non‐empty string.
    Returns:
      {
        "wiki_query": None,
        "wiki_result": "<text summary of first matching page or an error message>"
      }
    If no valid wiki_query is provided, returns {}.
    """
    query = state.get("wiki_query", "").strip()
    if not query:
        return {}

    try:
        # 1) Use the MediaWiki API to search for page titles matching the query
        search_params = {
            "action": "query",
            "list": "search",
            "srsearch": query,
            "format": "json",
            "utf8": 1
        }
        search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10)
        search_resp.raise_for_status()
        search_data = search_resp.json()

        search_results = search_data.get("query", {}).get("search", [])
        if not search_results:
            return {"wiki_query": None, "wiki_result": f"No Wikipedia page found for '{query}'."}

        # 2) Take the first search result's title
        first_title = search_results[0].get("title", "")
        if not first_title:
            return {"wiki_query": None, "wiki_result": "Unexpected format from Wikipedia search."}

        # 3) Fetch the page summary for that title via the REST summary endpoint
        title_for_url = requests.utils.requote_uri(first_title)
        summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}"
        summary_resp = requests.get(summary_url, timeout=10)
        summary_resp.raise_for_status()
        summary_data = summary_resp.json()

        # 4) Extract either the "extract" field or a fallback message
        summary_text = summary_data.get("extract")
        if not summary_text:
            summary_text = summary_data.get("description", "No summary available.")

        return {
            "wiki_query": None,
            "wiki_result": f"Title: {first_title}\n\n{summary_text}"
        }

    except requests.exceptions.RequestException as e:
        return {"wiki_query": None, "wiki_result": f"Wikipedia search error: {e}"}
    except Exception as e:
        return {"wiki_query": None, "wiki_result": f"Unexpected error in wikipedia_search_tool: {e}"}