File size: 24,414 Bytes
4f25f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode


# from typing import Any, Dict
# from typing import TypedDict, Annotated

from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Create a ToolNode that knows about your web_search function
import json
from old2state import AgentState

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

from old2tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool

llm = ChatOpenAI(model_name="gpt-4.1")

# ─── 1) plan_node ───
# ─── 1) plan_node ───
tool_counter = 0


# ─── 1) plan_node ───
def plan_node(state: AgentState) -> AgentState:
    """
    Step 1: Ask GPT to draft a concise direct answer (INTERIM_ANSWER),
            then decide if it's confident enough to stop or if it needs one tool.
    If confident: return {"final_answer":"<answer>"}
    Otherwise:   return exactly one of:
                 {"wiki_query":"..."},
                 {"ocr_path":"..."},
                 {"excel_path":"...","excel_sheet_name":"..."},
                 {"audio_path":"..."}
    """
    prior_msgs = state.get("messages", [])
    user_input = ""
    for msg in reversed(prior_msgs):
        if isinstance(msg, HumanMessage):
            user_input = msg.content
            break

    system_msg = SystemMessage(
        content=(
            
            "You are an agent that must do two things in one JSON output:\n\n"
            "  1) Provide a concise, direct answer to the user's question (no explanation).\n"
            "  2) Judge whether that answer is reliable:\n"
            "     • If you are fully confident, return exactly:\n"
            "         {\"final_answer\":\"<your concise answer>\"}\n"
            "       and nothing else.\n"
            "     • Otherwise, return exactly one of:\n"
            "         {\"wiki_query\":\"<Wikipedia search>\"}\n"
            "         {\"ocr_path\":\"<image path or task_id>\"}\n"
            "         {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
            "         {\"audio_path\":\"<audio path or task_id>\"}\n"
            "       and nothing else.\n"
            "Do NOT wrap in markdown—output only a single JSON object.\n"
            f"User's question: \"{user_input}\"\n"
        )
    )
    human_msg = HumanMessage(content=user_input)
    llm_response = llm([system_msg, human_msg])
    llm_out = llm_response.content.strip()

    ai_msg = AIMessage(content=llm_out)
    new_msgs = prior_msgs.copy() + [ai_msg]

    try:
        parsed = json.loads(llm_out)
        if isinstance(parsed, dict):
            partial: AgentState = {"messages": new_msgs}
            allowed = {
                "final_answer",
                "wiki_query",
                "ocr_path",
                "excel_path",
                "excel_sheet_name",
                "audio_path",
            }
            for k, v in parsed.items():
                if k in allowed:
                    partial[k] = v
            return partial
    except json.JSONDecodeError:
        pass

    return {
        "messages": new_msgs,
        "final_answer": "Sorry, I could not parse your intent.",
    }


# ─── 2) store_prev_state ───
def store_prev_state(state: AgentState) -> AgentState:
    return {**state, "prev_state": state.copy()}


# ─── 3) tools_node ───
def tool_node(state: AgentState) -> AgentState:
    """
    Dispatch exactly one tool based on which key was set:
      - wiki_query → wikipedia_search_tool
      - ocr_path   → ocr_image_tool
      - excel_path → parse_excel_tool
      - audio_path → audio_transcriber_tool
    """
    global tool_counter
    if tool_counter >= 5:
        # If we've already run 5 tools, do nothing
        return {
            "messages": state["messages"],
            "final_answer": state.get("final_answer", "No interim answer available.")
        }

    tool_counter += 1

    if state.get("wiki_query"):
        return wikipedia_search_tool(state)
    if state.get("ocr_path"):
        return ocr_image_tool(state)
    if state.get("excel_path"):
        return parse_excel_tool(state)
    if state.get("audio_path"):
        return audio_transcriber_tool(state)

    return {}  # no tool key present


# ─── 4) merge_tool_output ───
def merge_tool_output(state: AgentState) -> AgentState:
    """
    Combine previous state and tool output into one, but remove any stale request-keys.
    """
    prev = state.get("prev_state", {}).copy()

    # Drop stale request-keys in prev
    for dead in ["wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"]:
        prev.pop(dead, None)

    merged = {**prev, **state}
    # Drop them again from merged so they don't persist into the next cycle
    for dead in ["wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"]:
        merged.pop(dead, None)

    merged.pop("prev_state", None)
    return merged


# ─── 5) inspect_node ───
def inspect_node(state: AgentState) -> AgentState:
    """
    After running a tool, show GPT:
      - ORIGINAL user question
      - Any tool results (web_search_result, ocr_result, excel_result, transcript, wiki_result)
      - The INTERIM_ANSWER (always present if plan_node ran correctly)

    If tool_counter ≥ 5, use LLM once more (with full context) to craft a final answer.
    Otherwise, ask GPT to either:
      • Return {"final_answer":"<final>"} if done, OR
      • Return exactly one tool key to run next (wiki_query / ocr_path / excel_path & excel_sheet_name / audio_path).
    """

    global tool_counter

    # If we've already run 5 tools, ask GPT for a strictly‐formatted JSON final_answer
    if tool_counter >= 5:
        messages_for_llm = []

        # Re‐insert the user’s question
        question = ""
        for msg in reversed(state.get("messages", [])):
            if isinstance(msg, HumanMessage):
                question = msg.content
                break
        messages_for_llm.append(SystemMessage(content=f"USER_QUESTION: {question}"))

        # Add any tool results so far
        if sr := state.get("web_search_result"):
            messages_for_llm.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {sr}"))
        if orc := state.get("ocr_result"):
            messages_for_llm.append(SystemMessage(content=f"OCR_RESULT: {orc}"))
        if exr := state.get("excel_result"):
            messages_for_llm.append(SystemMessage(content=f"EXCEL_RESULT: {exr}"))
        if tr := state.get("transcript"):
            messages_for_llm.append(SystemMessage(content=f"AUDIO_TRANSCRIPT: {tr}"))
        if wr := state.get("wiki_result"):
            messages_for_llm.append(SystemMessage(content=f"WIKIPEDIA_RESULT: {wr}"))

        # Show the interim answer
        interim = state.get("interim_answer", "")
        messages_for_llm.append(SystemMessage(content=f"INTERIM_ANSWER: {interim}"))

        # Now ask for JSON ONLY (no reasoning, no extra text)
        final_prompt = (
            "Finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
            "Using only the information above—including the USER_QUESTION, "
            "any TOOL_RESULT, and the INTERIM_ANSWER—produce a concise final answer. "
            "Return exactly one JSON object and nothing else, in this format:\n\n"
            "{\"final_answer\":\"<your final answer>\"}\n"
            "Do not include any other words or punctuation outside that JSON. if its numbers, dont show the units"
        )
        messages_for_llm.append(SystemMessage(content=final_prompt))

        llm_response = llm(messages_for_llm)
        raw = llm_response.content.strip()
        new_msgs = state["messages"] + [AIMessage(content=raw)]

        # Try to parse exactly one JSON with "final_answer"
        try:
            parsed = json.loads(raw)
            if isinstance(parsed, dict) and "final_answer" in parsed:
                return {"messages": new_msgs, "final_answer": parsed["final_answer"]}
        except json.JSONDecodeError:
            pass

        # Fallback to returning the interim in case JSON parse fails
        return {"messages": new_msgs, "final_answer": interim}
    # ——————————— If tool_counter < 5, proceed as before ———————————
    messages_for_llm = []

    # (1) Re‐insert original user question
    question = ""
    for msg in reversed(state.get("messages", [])):
        if isinstance(msg, HumanMessage):
            question = msg.content
            break
    messages_for_llm.append(SystemMessage(content=f"USER_QUESTION: {question}"))

    # (2) Add any tool results
    if sr := state.get("web_search_result"):
        messages_for_llm.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {sr}"))
    if orc := state.get("ocr_result"):
        messages_for_llm.append(SystemMessage(content=f"OCR_RESULT: {orc}"))
    if exr := state.get("excel_result"):
        messages_for_llm.append(SystemMessage(content=f"EXCEL_RESULT: {exr}"))
    if tr := state.get("transcript"):
        messages_for_llm.append(SystemMessage(content=f"AUDIO_TRANSCRIPT: {tr}"))
    if wr := state.get("wiki_result"):
        messages_for_llm.append(SystemMessage(content=f"WIKIPEDIA_RESULT: {wr}"))

    # (3) Always show the interim answer
    interim = state.get("interim_answer", "")
    messages_for_llm.append(SystemMessage(content=f"INTERIM_ANSWER: {interim}"))

    # (4) Prompt GPT to decide final or another tool
    prompt = (
        "You have a current draft answer (INTERIM_ANSWER) and possibly some tool results above.\n"
        "If you are confident it’s correct, return exactly:\n"
        "  {\"final_answer\":\"<your final answer>\"}\n"
        "and nothing else.\n"
        "Otherwise, return exactly one of these JSON literals to fetch another tool:\n"
        "  {\"wiki_query\":\"<query for Wikipedia>\"}\n"
        "  {\"ocr_path\":\"<image path or task_id>\"}\n"
        "  {\"excel_path\":\"<xls path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
        "  {\"audio_path\":\"<audio path or task_id>\"}\n"
        "Do NOT wrap in markdown—return only the JSON object.\n"
    )
    messages_for_llm.append(SystemMessage(content=prompt))
    llm_response = llm(messages_for_llm)
    raw = llm_response.content.strip()
    new_msgs = state["messages"] + [AIMessage(content=raw)]

    # Try to parse the LLM’s JSON
    try:
        parsed = json.loads(raw)
        if isinstance(parsed, dict):
            # (a) If GPT gave a final_answer, return immediately
            if "final_answer" in parsed:
                return {"messages": new_msgs, "final_answer": parsed["final_answer"]}

            # (b) If GPT requested exactly one valid tool, return only that key
            valid_keys = {"wiki_query", "ocr_path", "excel_path", "excel_sheet_name", "audio_path"}
            requested_keys = set(parsed.keys()) & valid_keys
            if len(requested_keys) == 1:
                clean: AgentState = {"messages": new_msgs}
                for k in requested_keys:
                    clean[k] = parsed[k]
                return clean
    except json.JSONDecodeError:
        pass

    # (c) Fallback: if GPT never returned a valid tool key or a final_answer,
    # just finalize with the existing interim_answer
    return {"messages": new_msgs, "final_answer": interim}


# ─── 6) finalize_node ───
def finalize_node(state: AgentState) -> AgentState:
    """
    If state already has "final_answer", return it. Otherwise, it's an error.
    """
    if fa := state.get("final_answer"):
        return {"final_answer": fa}
    return {"final_answer": "ERROR: finalize called without a final_answer."}


# ─── 7) Build the graph and wire edges ───
graph = StateGraph(AgentState)

# Register nodes
graph.add_node("plan", plan_node)
graph.add_node("store_prev_state", store_prev_state)
graph.add_node("tools", tool_node)
graph.add_node("merge_tool_output", merge_tool_output)
graph.add_node("inspect", inspect_node)
graph.add_node("finalize", finalize_node)

# START → plan
graph.add_edge(START, "plan")

# plan → either finalize (if plan set final_answer) or store_prev_state (if plan wants a tool)
def route_plan(plan_out: AgentState) -> str:
    if plan_out.get("final_answer") is not None:
        return "finalize"
    return "store_prev_state"

graph.add_conditional_edges(
    "plan",
    route_plan,
    {"store_prev_state": "store_prev_state", "finalize": "finalize"},
)

# store_prev_state → tools
graph.add_edge("store_prev_state", "tools")

# tools → merge_tool_output
graph.add_edge("tools", "merge_tool_output")

# merge_tool_output → inspect
graph.add_edge("merge_tool_output", "inspect")

# inspect → either finalize (if inspect set final_answer) or store_prev_state (if inspect wants another tool)
def route_inspect(inspect_out: AgentState) -> str:
    if inspect_out.get("final_answer") is not None:
        return "finalize"
    return "store_prev_state"

graph.add_conditional_edges(
    "inspect",
    route_inspect,
    {"store_prev_state": "store_prev_state", "finalize": "finalize"},
)

# finalize → END
graph.add_edge("finalize", END)

compiled_graph = graph.compile()


# ─── 8) respond_to_input ───
def respond_to_input(user_input: str, task_id) -> str:
    """
    Reset the global tool_counter, seed state['messages'], invoke the graph,
    and return the final_answer.
    """
    global tool_counter
    tool_counter = 0  # Reset on every new user query

    system_msg = SystemMessage(
        content=(
            "You are an agent orchestrator. Decide whether to use a tool or answer directly.\n"
            "Try not to use tools so many times. If you think you can answer the question without using a tool, do it Please.\n"
            "Tools available:\n"
            "  • Wikipedia: set {\"wiki_query\":\"<search terms>\"}\n"
            "  • OCR: set {\"ocr_path\":\"<image path or task_id>\"}\n"
            "  • Excel: set {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet>\"}\n"
            "  • Audio transcription: set {\"audio_path\":\"<audio path or task_id>\"}\n"
            "If you can answer immediately, set {\"final_answer\":\"<answer>\"}. "
            "Respond with only one JSON object and no extra formatting."
        )
    )
    human_msg = HumanMessage(content=user_input)

    initial_state: AgentState = {"messages": [system_msg, human_msg], "task_id": task_id}
    final_state = compiled_graph.invoke(initial_state)
    return final_state.get("final_answer", "Error: No final answer generated.")

class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str, task_id) -> str:
        # print(f"Agent received question (first 50 chars): {question[:50]}...")
        # fixed_answer = "This is a default answer."
        # print(f"Agent returning fixed answer: {fixed_answer}")
        print()
        print()
        print()
        print()
        
        
        print(f"Agent received question: {question}")
        print()
        return respond_to_input(question, task_id)
        # return fixed_answer






def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, task_id)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    # print("LangGraph version:", langgraph.__version__) 
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
    # import langgraph
    # print("▶︎ LangGraph version:", langgraph.__version__)
    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)