Spaces:
Sleeping
Sleeping
File size: 14,138 Bytes
4f25f4e d3b49b4 4f25f4e d3b49b4 4f25f4e d3b49b4 4f25f4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# tools.py
import pandas as pd
# from langchain_community.tools import DuckDuckGoSearchRun
from pathlib import Path
# from PIL import Image
# import pytesseract
from old.old2state import AgentState
from langchain.schema import HumanMessage
import regex as re
import time
from duckduckgo_search import DDGS
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def _download_file_for_task(task_id: str, ext: str) -> str:
"""
Helper: attempt to GET the remote file for a given task_id.
Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful,
or an empty string if no file / download failed.
"""
print("reached _download_file_for_task")
os.makedirs("hf_files", exist_ok=True)
local_path = os.path.join("hf_files", f"{task_id}.{ext}")
url = f"{DEFAULT_API_URL}/files/{task_id}"
try:
resp = requests.get(url, timeout=10)
if resp.status_code == 200 and resp.content:
print(f"Downloaded file from {url} to {local_path}")
with open(local_path, "wb") as f:
f.write(resp.content)
return local_path
except Exception:
pass
# If we get here, either 404 or download error
return ""
def web_search_tool(state: AgentState) -> AgentState:
"""
Expects: state["web_search_query"] is a non‐empty string.
Returns: {"web_search_query": None, "web_search_result": <string>}.
Retries up to 5 times on either a DuckDuckGo “202 Ratelimit” response or any exception (e.g. timeout).
"""
print("reached web_search_tool")
query = state.get("web_search_query", "")
if not query:
return {} # nothing to do
ddg = DDGS()
max_retries = 5
result_text = ""
for attempt in range(1, max_retries + 1):
try:
result_text = str(ddg.text(query, max_results=5))
except Exception as e:
# Network error or timeout—retry up to max_retries
if attempt < max_retries:
print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})")
time.sleep(4)
continue
else:
# Final attempt failed
return {
"web_search_query": None,
"web_search_result": f"Error during DuckDuckGo search: {e}"
}
# Check for DuckDuckGo rate‐limit indicator
if "202 Ratelimit" in result_text:
if attempt < max_retries:
print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})")
time.sleep(4)
continue
else:
# Final attempt still rate‐limited
break
# Successful response (no exception and no rate‐limit text)
break
return {
"web_search_query": None,
"web_search_result": result_text
}
def ocr_image_tool(state: AgentState) -> AgentState:
"""
Expects: state["ocr_path"] is either:
• a local image path (e.g. "./hf_files/abc.png"), OR
• a Task ID (e.g. "abc123"), in which case we try downloading
GET {DEFAULT_API_URL}/files/{task_id} with .png/.jpg/.jpeg extensions.
Returns:
{
"ocr_path": None,
"ocr_result": "<OCR text + brief caption or an error message>"
}
"""
print("reached ocr_image_tool")
path_or_id = state.get("ocr_path", "")
# if not path_or_id:
# return {}
# 1) Determine local_img: either existing path_or_id or download by Task ID
# local_img = ""
# if os.path.exists(path_or_id):
# local_img = path_or_id
# else:
for ext in ("png", "jpg", "jpeg"):
candidate = _download_file_for_task(state.get("task_id"), ext)
if candidate:
local_img = candidate
break
if not local_img or not os.path.exists(local_img):
return {
"ocr_path": None,
"ocr_result": "Error: No image file found (local nonexistent or download failed)."
}
# 2) Read raw bytes
try:
with open(local_img, "rb") as f:
image_bytes = f.read()
except Exception as e:
return {
"ocr_path": None,
"ocr_result": f"Error reading image file: {e}"
}
# 3) Prepare HF Inference headers
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
return {
"ocr_path": None,
"ocr_result": "Error: HUGGINGFACE_API_KEY not set in environment."
}
headers = {"Authorization": f"Bearer {hf_token}"}
# 4) Call HF’s vision-ocr to extract text
ocr_text = ""
try:
ocr_resp = requests.post(
"https://api-inference.huggingface.co/models/google/vit-ocr",
headers=headers,
files={"file": image_bytes},
timeout=30
)
ocr_resp.raise_for_status()
ocr_json = ocr_resp.json()
# The JSON has “pages” → list of blocks → “lines” → each line has “text”
lines = []
for page in ocr_json.get("pages", []):
for line in page.get("lines", []):
lines.append(line.get("text", "").strip())
ocr_text = "\n".join(lines).strip() or "(no visible text)"
except Exception as e:
ocr_text = f"Error during HF OCR: {e}"
# 5) Call HF’s image-captioning to get a brief description
caption = ""
try:
cap_resp = requests.post(
"https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base",
headers=headers,
files={"file": image_bytes},
timeout=30
)
cap_resp.raise_for_status()
cap_json = cap_resp.json()
# The response looks like: {"generated_text": "...caption..."}
caption = cap_json.get("generated_text", "").strip()
if not caption:
caption = "(no caption returned)"
except Exception as e:
caption = f"Error during HF captioning: {e}"
# 6) Combine OCR + caption
combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}"
print("combined: ")
return {
"ocr_path": None,
"ocr_result": combined
}
def parse_excel_tool(state: AgentState) -> AgentState:
"""
Expects state["excel_path"] to be either:
• A real local .xlsx path, or
• A Task ID string (e.g. "abc123"), in which case we GET /files/abc123.xlsx.
Returns:
{
"excel_path": None,
"excel_sheet_name": None,
"excel_result": "<stringified records or Markdown table>"
}
Always attempts to download the file for the given path or task ID.
"""
print("reached parse_excel_tool")
local_xlsx = _download_file_for_task(state.get("task_id"), "xlsx")
path_or_id = state.get("excel_path", "")
sheet = state.get("excel_sheet_name", "")
if not path_or_id:
return {}
# Always attempt to download the file, regardless of local existence
# If we finally have a real file, read it
if local_xlsx and os.path.exists(local_xlsx):
try:
print("reached excel file found")
xls = pd.ExcelFile(local_xlsx)
if sheet and sheet in xls.sheet_names:
df = pd.read_excel(xls, sheet_name=sheet)
else:
df = pd.read_excel(xls, sheet_name=xls.sheet_names[0])
records = df.to_dict(orient="records")
text = str(records)
print("reached excel file found: ")
print(text)
print()
return {
"excel_path": None,
"excel_sheet_name": None,
"excel_result": text
}
except Exception as e:
print(f">>> parse_excel_tool: Error reading Excel file {local_xlsx}: {e}")
# Fall back to scanning for Markdown below
# Fallback: scan any HumanMessage for a Markdown‐style table
messages = state.get("messages", [])
table_lines = []
collecting = False
for msg in messages:
if isinstance(msg, HumanMessage):
for line in msg.content.splitlines():
if re.match(r"^\s*\|\s*[-A-Za-z0-9]", line):
collecting = True
if collecting:
if not re.match(r"^\s*\|", line):
collecting = False
break
table_lines.append(line)
if table_lines:
break
if not table_lines:
return {
"excel_path": None,
"excel_sheet_name": None,
"excel_result": "Error: No Excel file found and no Markdown table detected in prompt."
}
clean_rows = [row for row in table_lines if not re.match(r"^\s*\|\s*-+", row)]
table_block = "\n".join(clean_rows).strip()
print(f"Parsed excel as excel_result: {table_block}")
return {
"excel_path": None,
"excel_sheet_name": None,
"excel_result": table_block
}
import os
import os
import openai
from old.old2state import AgentState
def audio_transcriber_tool(state: AgentState) -> AgentState:
"""
LangGraph tool for transcribing audio via OpenAI's Whisper API.
Expects: state["audio_path"] to be either:
• A local file path (e.g. "./hf_files/abc.mp3"), OR
• A Task ID (e.g. "abc123"), in which case we try downloading
GET {DEFAULT_API_URL}/files/{task_id} with .mp3, .wav, .m4a extensions.
Returns:
{
"audio_path": None,
"transcript": "<text or error message>"
}
Always attempts to download the file for the given path or task ID.
"""
print("reached audio_transcriber_tool")
path_or_id = state.get("audio_path", "")
if not path_or_id:
return {}
# Always attempt to download the file, regardless of local existence
local_audio = ""
for ext in ("mp3", "wav", "m4a"):
candidate = _download_file_for_task(state.get("task_id"), ext)
if candidate:
local_audio = candidate
break
if not local_audio or not os.path.exists(local_audio):
return {
"audio_path": None,
"transcript": "Error: No audio file found (download failed)."
}
# Send to OpenAI Whisper
try:
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
raise RuntimeError("OPENAI_API_KEY is not set in environment.")
with open(local_audio, "rb") as audio_file:
print("reached openai.audio.transcriptions.create")
response = openai.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
)
print("reached response")
text = response.text.strip()
except Exception as e:
text = f"Error during transcription: {e}"
print(f"Transcripted as transcript: {text}")
return {
"audio_path": None,
"transcript": text
}
# tools.py
import re
import requests
from old.old2state import AgentState
def wikipedia_search_tool(state: AgentState) -> AgentState:
"""
LangGraph wrapper for searching Wikipedia.
Expects: state["wiki_query"] to be a non‐empty string.
Returns:
{
"wiki_query": None,
"wiki_result": "<text summary of first matching page or an error message>"
}
If no valid wiki_query is provided, returns {}.
"""
print("reached wikipedia search tool")
query = state.get("wiki_query", "").strip()
if not query:
return {}
try:
# 1) Use the MediaWiki API to search for page titles matching the query
search_params = {
"action": "query",
"list": "search",
"srsearch": query,
"format": "json",
"utf8": 1
}
search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10)
search_resp.raise_for_status()
search_data = search_resp.json()
search_results = search_data.get("query", {}).get("search", [])
# print("wikipedia: search_results",search_results)
if not search_results:
return {"wiki_query": None, "wiki_result": f"No Wikipedia page found for '{query}'."}
# 2) Take the first search result's title
first_title = search_results[0].get("title", "")
if not first_title:
return {"wiki_query": None, "wiki_result": "Unexpected format from Wikipedia search."}
# 3) Fetch the page summary for that title via the REST summary endpoint
title_for_url = requests.utils.requote_uri(first_title)
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}"
summary_resp = requests.get(summary_url, timeout=10)
summary_resp.raise_for_status()
summary_data = summary_resp.json()
# 4) Extract either the "extract" field or a fallback message
summary_text = summary_data.get("extract")
if not summary_text:
summary_text = summary_data.get("description", "No summary available.")
return {
"wiki_query": None,
"wiki_result": f"Title: {first_title}\n\n{summary_text}"
}
except requests.exceptions.RequestException as e:
return {"wiki_query": None, "wiki_result": f"Wikipedia search error: {e}"}
except Exception as e:
return {"wiki_query": None, "wiki_result": f"Unexpected error in wikipedia_search_tool: {e}"}
def run_tools(state: AgentState, tool_out: AgentState) -> AgentState:
"""
Merges whatever partial state the tool wrapper returned (tool_out)
into the main state. That is, combine previous keys with new keys:
new_state = { **state, **tool_out }.
This node should be wired as its own graph node, not as a transition function.
"""
new_state = {**state, **tool_out}
return new_state |