File size: 21,096 Bytes
31e0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f25f4e
31e0eff
 
 
 
4f25f4e
31e0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode


# from typing import Any, Dict
# from typing import TypedDict, Annotated

from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Create a ToolNode that knows about your web_search function
import json
from old2state import AgentState

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

from old2tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool

llm = ChatOpenAI(model_name="gpt-4o-mini")

# agent = create_react_agent(model=llm, tools=tool_node)

def plan_node(state: AgentState) -> AgentState:
    """
    This plan_node will ask GPT to:
      1) First write a concise *direct* answer.
      2) Then decide whether it’s confident enough to stop (return {"final_answer": ...})
         or if it needs to verify via one tool (return exactly one of {"wiki_query":...}, 
         {"web_search_query":...}, {"ocr_path":...}, {"excel_path":...,"excel_sheet_name":...}, or {"audio_path":...}).
    """
    prior_msgs = state.get("messages", [])
    user_input = ""
    for msg in reversed(prior_msgs):
        if isinstance(msg, HumanMessage):
            user_input = msg.content
            break

    # (1) Build a fresh SystemMessage that tells the LLM exactly how to self‐evaluate
    system_msg = SystemMessage(
        content=(
            "You are an agent that must do two things in a single JSON output:\n\n"
            "  1) Produce a concise, direct answer to the user’s question (no explanation, just the answer).  \n"
            "  2) Judge whether that answer is reliable.  \n"
            "     • If you are fully confident and do NOT need any external verification, return exactly:\n"
            "         {\"final_answer\":\"<your concise answer>\"}\n"
            "       and nothing else.\n"
            "     • If you think you need to verify or look something up first, return exactly one of the following (and nothing else):\n"
            "         {\"wiki_query\":\"<search terms for Wikipedia>\"}\n"
            "         {\"web_search_query\":\"<search terms>\"}\n"
            "         {\"ocr_path\":\"<local image path or task_id>\"}\n"
            "         {\"excel_path\":\"<local .xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
            "         {\"audio_path\":\"<local audio path or task_id>\"}\n\n"
            "       You must pick exactly one key—either final_answer or exactly one tool key.\n"
            "       Do NOT wrap it in any markdown or extra text.  Only output a single JSON object.\n"
            "\n"
            f"User’s question: \"{user_input}\"\n"
        )
    )
    human_msg = HumanMessage(content=user_input)

    # (2) Call the LLM with this single system/human pair
    llm_response = llm([system_msg, human_msg])
    llm_out = llm_response.content.strip()

    # (3) Append the LLM output into the message history
    ai_msg = AIMessage(content=llm_out)
    new_msgs = prior_msgs.copy() + [ai_msg]

    # (4) Attempt to parse that JSON
    try:
        parsed = json.loads(llm_out)
        if isinstance(parsed, dict):
            partial: AgentState = {"messages": new_msgs}
            allowed_keys = {
                "final_answer",
                "wiki_query",
                "web_search_query",
                "ocr_path",
                "excel_path",
                "excel_sheet_name",
                "audio_path"
            }
            for k, v in parsed.items():
                if k in allowed_keys:
                    partial[k] = v
            return partial
    except json.JSONDecodeError:
        pass

    # (5) If parsing failed, fall back to a safe “sorry” answer
    return {
        "messages": new_msgs,
        "final_answer": "Sorry, I could not parse your intent."
    }



# ─── 3) Revised finalize_node ───
def finalize_node(state: AgentState) -> AgentState:
    if state.get("final_answer") is not None:
        return {"final_answer": state["final_answer"]}

    # Re‐extract the last user question
    question = ""
    for msg in reversed(state.get("messages", [])):
        if isinstance(msg, HumanMessage):
            question = msg.content
            break

    # Build one monolithic context
    combined = f"USER_QUESTION: {question}\n"
    if sr := state.get("web_search_result"):
        combined += f"WEB_SEARCH_RESULT: {sr}\n"
    if orc := state.get("ocr_result"):
        combined += f"OCR_RESULT: {orc}\n"
    if exr := state.get("excel_result"):
        combined += f"EXCEL_RESULT: {exr}\n"
    # Note: your code already stores the audio transcription under "transcript"
    if tr := state.get("transcript"):
        combined += f"AUDIO_TRANSCRIPT: {tr}\n"
    if wr := state.get("wiki_result"):
        combined += f"WIKIPEDIA_RESULT: {wr}\n"

    # Here we demand a JSON response with a single key "final_answer"
    combined += (
        "Based on the above, respond with exactly one JSON object, and nothing else. "
        "The JSON object must have exactly one key: \"final_answer\". "
        "For example:\n"
        "{\"final_answer\":\"42\"}\n"
        "Do NOT include any explanation, markdown, or any extra whitespace outside the JSON object. "
        "If the answer is multiple words, put them in a comma-separated string, e.g. \"red,green,blue\". "
        "If the answer is a number, it must be digits only—e.g. \"725.00\".\n"
        "If the answer is a list of items, put them in a comma-separated string, e.g. \"item1,item2,item3\". "
        "If the user prompt asks you to do something, then do it "
    )

    # Debug print
    # print("\n>>> finalize_node JSON‐strict prompt:\n" + combined + "\n<<< end prompt >>>\n")

    llm_response = llm.invoke([SystemMessage(content=combined)])
    raw = llm_response.content.strip()
    # print(">>> finalize_node got raw response:", raw)

    try:
        parsed = json.loads(raw)
        return {"final_answer": parsed["final_answer"]}
    except Exception as e:
        # If the LLM did not return valid JSON, store the error so you can see it
        # print(">>> finalize_node JSON parse error:", e, "raw was:", raw)
        return {"final_answer": f"ERROR: invalid JSON from finalize_node: {raw}"}

# ─── 4) Wrap tools in a ToolNode ───
def tool_node(state: AgentState) -> AgentState:
    """
    Inspect exactly which tool‐key was set in `state` and call that function.
    Returns only the partial state (with the tool's outputs) so that merge_tool_output can combine it.
    """
    # We expect exactly one of these keys to be non‐empty:
    #   "web_search_query", "ocr_path", "excel_path"/"excel_sheet_name", "audio_path"
    # Whichever is present, call the corresponding tool and return its result.
    
    if state.get("wiki_query"):
        out = wikipedia_search_tool(state)
        return out
    
    if state.get("web_search_query"):
        # print(f">>> tools_node dispatching web_search_tool with query: {state['web_search_query']!r}")
        out = web_search_tool(state)
        return out

    if state.get("ocr_path"):
        # print(f">>> tools_node dispatching ocr_image_tool with path: {state['ocr_path']!r}")
        out = ocr_image_tool(state)
        return out

    if state.get("excel_path"):
        # We assume plan_node always sets both excel_path and excel_sheet_name together
        # print(f">>> tools_node dispatching parse_excel_tool with path: {state['excel_path']!r}, sheet: {state.get('excel_sheet_name')!r}")
        out = parse_excel_tool(state)
        return out

    if state.get("audio_path"):
        # print(f">>> tools_node dispatching audio_transcriber_tool with path: {state['audio_path']!r}")
        out = audio_transcriber_tool(state)
        return out



    # If we somehow reach here, no recognized tool key was set:
    # print(">>> tools_node: no valid tool key found in state!")
    return {}


# Add a node to store the previous state

def store_prev_state(state: AgentState) -> AgentState:
    return {**state, "prev_state": state.copy()}

def merge_tool_output(state: AgentState) -> AgentState:
    prev_state = state.get("prev_state", {})
    merged = {**prev_state, **state}
    merged.pop("prev_state", None)
    return merged

# ─── 5) Build the graph ───
graph = StateGraph(AgentState)

# 5.a) Register nodes
graph.add_node("plan", plan_node)
graph.add_node("store_prev_state", store_prev_state)
graph.add_node("tools", tool_node)
graph.add_node("merge_tool_output", merge_tool_output)
graph.add_node("finalize", finalize_node)

# 5.b) Wire START → plan
graph.add_edge(START, "plan")

# 5.c) plan → conditional: if any tool key was set, go to "tools"; otherwise "finalize"
def route_plan(plan_out: AgentState) -> str:
    # print what keys are present in plan_out
    # print(f">> route_plan sees plan_out keys: {list(plan_out.keys())}")

    if (
        plan_out.get("web_search_query")
        or plan_out.get("ocr_path")
        or plan_out.get("excel_path")
        or plan_out.get("audio_path")
        or plan_out.get("wiki_query")
    ):
        # print(">> route_plan ➡️ tools")
        return "tools"
    # print(">> route_plan ➡️ finalize")
    return "finalize"


graph.add_conditional_edges(
    "plan",
    route_plan,
    {"tools": "store_prev_state", "finalize": "finalize"}
)

# 5.d) store_prev_state → tools
graph.add_edge("store_prev_state", "tools")

# 5.e) tools → merge_tool_output
graph.add_edge("tools", "merge_tool_output")

# 5.f) merge_tool_output → finalize
graph.add_edge("merge_tool_output", "finalize")

# 5.g) finalize → END
graph.add_edge("finalize", END)

compiled_graph = graph.compile()


# ─── 6) respond_to_input ───
def respond_to_input(user_input: str, task_id) -> str:
    """
    Seed state['messages'] with a SystemMessage (tools description) + HumanMessage(user_input).
    Then invoke the graph; return the final_answer from the resulting state.
    """
    system_msg = SystemMessage(
    content=(
        "You are an agent that must choose exactly one of the following actions:\n"
        "  1) If the user's question can be answered directly by consulting Wikipedia, return exactly:\n"
        "       {\"wiki_query\":\"<search terms for Wikipedia>\"}\n"
        "     and nothing else. Use Wikipedia before any other tool.\n"
        "  2) Only if Wikipedia cannot directly answer, perform a web search and return:\n"
        "       {\"web_search_query\":\"<search terms>\"}\n"
        "     and nothing else.\n"
        "  3) If the user's question requires extracting text from an image, return:\n"
        "       {\"ocr_path\":\"<local image path>\"}\n"
        "     and nothing else.\n"
        "  4) If the user's question requires reading a spreadsheet, return:\n"
        "       {\"excel_path\":\"<local .xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
        "     and nothing else.\n"
        "  5) If the user needs an audio transcription, return:\n"
        "       {\"audio_path\":\"<local audio file path>\"}\n"
        "     and nothing else.\n"
        "  6) If you already know the answer without using any tool, return exactly:\n"
        "       {\"final_answer\":\"<your concise answer>\"}\n"
        "     and nothing else.\n"
        "If the user's prompt explicitly tells you to perform a specific action (for example, “translate this sentence”), then do it directly and return your result as {\"final_answer\":\"<your answer>\"} or the appropriate tool key if needed.  \n"
        "Do NOT include any additional keys, explanation, or markdown—only one JSON object with exactly one key."
    )
)

    human_msg = HumanMessage(content=user_input)

    initial_state: AgentState = {"messages": [system_msg, human_msg], "task_id": task_id}
    final_state = compiled_graph.invoke(initial_state)
    return final_state.get("final_answer", "Error: No final answer generated.")




class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str, task_id) -> str:
        # print(f"Agent received question (first 50 chars): {question[:50]}...")
        # fixed_answer = "This is a default answer."
        # print(f"Agent returning fixed answer: {fixed_answer}")
        print()
        print()
        print()
        print()
        
        
        print(f"Agent received question: {question}")
        print()
        return respond_to_input(question, task_id)
        # return fixed_answer






def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, task_id)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    # print("LangGraph version:", langgraph.__version__) 
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
    # import langgraph
    # print("▶︎ LangGraph version:", langgraph.__version__)
    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)