Spaces:
Sleeping
Sleeping
File size: 21,096 Bytes
31e0eff 4f25f4e 31e0eff 4f25f4e 31e0eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode
# from typing import Any, Dict
# from typing import TypedDict, Annotated
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Create a ToolNode that knows about your web_search function
import json
from old2state import AgentState
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
from old2tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool
llm = ChatOpenAI(model_name="gpt-4o-mini")
# agent = create_react_agent(model=llm, tools=tool_node)
def plan_node(state: AgentState) -> AgentState:
"""
This plan_node will ask GPT to:
1) First write a concise *direct* answer.
2) Then decide whether it’s confident enough to stop (return {"final_answer": ...})
or if it needs to verify via one tool (return exactly one of {"wiki_query":...},
{"web_search_query":...}, {"ocr_path":...}, {"excel_path":...,"excel_sheet_name":...}, or {"audio_path":...}).
"""
prior_msgs = state.get("messages", [])
user_input = ""
for msg in reversed(prior_msgs):
if isinstance(msg, HumanMessage):
user_input = msg.content
break
# (1) Build a fresh SystemMessage that tells the LLM exactly how to self‐evaluate
system_msg = SystemMessage(
content=(
"You are an agent that must do two things in a single JSON output:\n\n"
" 1) Produce a concise, direct answer to the user’s question (no explanation, just the answer). \n"
" 2) Judge whether that answer is reliable. \n"
" • If you are fully confident and do NOT need any external verification, return exactly:\n"
" {\"final_answer\":\"<your concise answer>\"}\n"
" and nothing else.\n"
" • If you think you need to verify or look something up first, return exactly one of the following (and nothing else):\n"
" {\"wiki_query\":\"<search terms for Wikipedia>\"}\n"
" {\"web_search_query\":\"<search terms>\"}\n"
" {\"ocr_path\":\"<local image path or task_id>\"}\n"
" {\"excel_path\":\"<local .xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
" {\"audio_path\":\"<local audio path or task_id>\"}\n\n"
" You must pick exactly one key—either final_answer or exactly one tool key.\n"
" Do NOT wrap it in any markdown or extra text. Only output a single JSON object.\n"
"\n"
f"User’s question: \"{user_input}\"\n"
)
)
human_msg = HumanMessage(content=user_input)
# (2) Call the LLM with this single system/human pair
llm_response = llm([system_msg, human_msg])
llm_out = llm_response.content.strip()
# (3) Append the LLM output into the message history
ai_msg = AIMessage(content=llm_out)
new_msgs = prior_msgs.copy() + [ai_msg]
# (4) Attempt to parse that JSON
try:
parsed = json.loads(llm_out)
if isinstance(parsed, dict):
partial: AgentState = {"messages": new_msgs}
allowed_keys = {
"final_answer",
"wiki_query",
"web_search_query",
"ocr_path",
"excel_path",
"excel_sheet_name",
"audio_path"
}
for k, v in parsed.items():
if k in allowed_keys:
partial[k] = v
return partial
except json.JSONDecodeError:
pass
# (5) If parsing failed, fall back to a safe “sorry” answer
return {
"messages": new_msgs,
"final_answer": "Sorry, I could not parse your intent."
}
# ─── 3) Revised finalize_node ───
def finalize_node(state: AgentState) -> AgentState:
if state.get("final_answer") is not None:
return {"final_answer": state["final_answer"]}
# Re‐extract the last user question
question = ""
for msg in reversed(state.get("messages", [])):
if isinstance(msg, HumanMessage):
question = msg.content
break
# Build one monolithic context
combined = f"USER_QUESTION: {question}\n"
if sr := state.get("web_search_result"):
combined += f"WEB_SEARCH_RESULT: {sr}\n"
if orc := state.get("ocr_result"):
combined += f"OCR_RESULT: {orc}\n"
if exr := state.get("excel_result"):
combined += f"EXCEL_RESULT: {exr}\n"
# Note: your code already stores the audio transcription under "transcript"
if tr := state.get("transcript"):
combined += f"AUDIO_TRANSCRIPT: {tr}\n"
if wr := state.get("wiki_result"):
combined += f"WIKIPEDIA_RESULT: {wr}\n"
# Here we demand a JSON response with a single key "final_answer"
combined += (
"Based on the above, respond with exactly one JSON object, and nothing else. "
"The JSON object must have exactly one key: \"final_answer\". "
"For example:\n"
"{\"final_answer\":\"42\"}\n"
"Do NOT include any explanation, markdown, or any extra whitespace outside the JSON object. "
"If the answer is multiple words, put them in a comma-separated string, e.g. \"red,green,blue\". "
"If the answer is a number, it must be digits only—e.g. \"725.00\".\n"
"If the answer is a list of items, put them in a comma-separated string, e.g. \"item1,item2,item3\". "
"If the user prompt asks you to do something, then do it "
)
# Debug print
# print("\n>>> finalize_node JSON‐strict prompt:\n" + combined + "\n<<< end prompt >>>\n")
llm_response = llm.invoke([SystemMessage(content=combined)])
raw = llm_response.content.strip()
# print(">>> finalize_node got raw response:", raw)
try:
parsed = json.loads(raw)
return {"final_answer": parsed["final_answer"]}
except Exception as e:
# If the LLM did not return valid JSON, store the error so you can see it
# print(">>> finalize_node JSON parse error:", e, "raw was:", raw)
return {"final_answer": f"ERROR: invalid JSON from finalize_node: {raw}"}
# ─── 4) Wrap tools in a ToolNode ───
def tool_node(state: AgentState) -> AgentState:
"""
Inspect exactly which tool‐key was set in `state` and call that function.
Returns only the partial state (with the tool's outputs) so that merge_tool_output can combine it.
"""
# We expect exactly one of these keys to be non‐empty:
# "web_search_query", "ocr_path", "excel_path"/"excel_sheet_name", "audio_path"
# Whichever is present, call the corresponding tool and return its result.
if state.get("wiki_query"):
out = wikipedia_search_tool(state)
return out
if state.get("web_search_query"):
# print(f">>> tools_node dispatching web_search_tool with query: {state['web_search_query']!r}")
out = web_search_tool(state)
return out
if state.get("ocr_path"):
# print(f">>> tools_node dispatching ocr_image_tool with path: {state['ocr_path']!r}")
out = ocr_image_tool(state)
return out
if state.get("excel_path"):
# We assume plan_node always sets both excel_path and excel_sheet_name together
# print(f">>> tools_node dispatching parse_excel_tool with path: {state['excel_path']!r}, sheet: {state.get('excel_sheet_name')!r}")
out = parse_excel_tool(state)
return out
if state.get("audio_path"):
# print(f">>> tools_node dispatching audio_transcriber_tool with path: {state['audio_path']!r}")
out = audio_transcriber_tool(state)
return out
# If we somehow reach here, no recognized tool key was set:
# print(">>> tools_node: no valid tool key found in state!")
return {}
# Add a node to store the previous state
def store_prev_state(state: AgentState) -> AgentState:
return {**state, "prev_state": state.copy()}
def merge_tool_output(state: AgentState) -> AgentState:
prev_state = state.get("prev_state", {})
merged = {**prev_state, **state}
merged.pop("prev_state", None)
return merged
# ─── 5) Build the graph ───
graph = StateGraph(AgentState)
# 5.a) Register nodes
graph.add_node("plan", plan_node)
graph.add_node("store_prev_state", store_prev_state)
graph.add_node("tools", tool_node)
graph.add_node("merge_tool_output", merge_tool_output)
graph.add_node("finalize", finalize_node)
# 5.b) Wire START → plan
graph.add_edge(START, "plan")
# 5.c) plan → conditional: if any tool key was set, go to "tools"; otherwise "finalize"
def route_plan(plan_out: AgentState) -> str:
# print what keys are present in plan_out
# print(f">> route_plan sees plan_out keys: {list(plan_out.keys())}")
if (
plan_out.get("web_search_query")
or plan_out.get("ocr_path")
or plan_out.get("excel_path")
or plan_out.get("audio_path")
or plan_out.get("wiki_query")
):
# print(">> route_plan ➡️ tools")
return "tools"
# print(">> route_plan ➡️ finalize")
return "finalize"
graph.add_conditional_edges(
"plan",
route_plan,
{"tools": "store_prev_state", "finalize": "finalize"}
)
# 5.d) store_prev_state → tools
graph.add_edge("store_prev_state", "tools")
# 5.e) tools → merge_tool_output
graph.add_edge("tools", "merge_tool_output")
# 5.f) merge_tool_output → finalize
graph.add_edge("merge_tool_output", "finalize")
# 5.g) finalize → END
graph.add_edge("finalize", END)
compiled_graph = graph.compile()
# ─── 6) respond_to_input ───
def respond_to_input(user_input: str, task_id) -> str:
"""
Seed state['messages'] with a SystemMessage (tools description) + HumanMessage(user_input).
Then invoke the graph; return the final_answer from the resulting state.
"""
system_msg = SystemMessage(
content=(
"You are an agent that must choose exactly one of the following actions:\n"
" 1) If the user's question can be answered directly by consulting Wikipedia, return exactly:\n"
" {\"wiki_query\":\"<search terms for Wikipedia>\"}\n"
" and nothing else. Use Wikipedia before any other tool.\n"
" 2) Only if Wikipedia cannot directly answer, perform a web search and return:\n"
" {\"web_search_query\":\"<search terms>\"}\n"
" and nothing else.\n"
" 3) If the user's question requires extracting text from an image, return:\n"
" {\"ocr_path\":\"<local image path>\"}\n"
" and nothing else.\n"
" 4) If the user's question requires reading a spreadsheet, return:\n"
" {\"excel_path\":\"<local .xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
" and nothing else.\n"
" 5) If the user needs an audio transcription, return:\n"
" {\"audio_path\":\"<local audio file path>\"}\n"
" and nothing else.\n"
" 6) If you already know the answer without using any tool, return exactly:\n"
" {\"final_answer\":\"<your concise answer>\"}\n"
" and nothing else.\n"
"If the user's prompt explicitly tells you to perform a specific action (for example, “translate this sentence”), then do it directly and return your result as {\"final_answer\":\"<your answer>\"} or the appropriate tool key if needed. \n"
"Do NOT include any additional keys, explanation, or markdown—only one JSON object with exactly one key."
)
)
human_msg = HumanMessage(content=user_input)
initial_state: AgentState = {"messages": [system_msg, human_msg], "task_id": task_id}
final_state = compiled_graph.invoke(initial_state)
return final_state.get("final_answer", "Error: No final answer generated.")
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str, task_id) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
print()
print()
print()
print()
print(f"Agent received question: {question}")
print()
return respond_to_input(question, task_id)
# return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
# print("LangGraph version:", langgraph.__version__)
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# import langgraph
# print("▶︎ LangGraph version:", langgraph.__version__)
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |