Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| from langchain_openai import ChatOpenAI | |
| from langgraph.graph import StateGraph, START, END | |
| from langchain.schema import HumanMessage, SystemMessage, AIMessage | |
| # Create a ToolNode that knows about your web_search function | |
| import json | |
| from state import AgentState | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| import json | |
| from typing import Any, Dict, List, Optional | |
| # βββββββββββββββββββββββββββ External tools ββββββββββββββββββββββββββββββ | |
| from tools import ( | |
| wikipedia_search_tool, | |
| ocr_image_tool, | |
| audio_transcriber_tool, | |
| parse_excel_tool | |
| ) | |
| # βββββββββββββββββββββββββββ Configuration βββββββββββββββββββββββββββββββ | |
| LLM = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.0) | |
| MAX_TOOL_CALLS = 5 | |
| # βββββββββββββββββββββββββββ Helper utilities ββββββββββββββββββββββββββββ | |
| def safe_json(text: str) -> Optional[Dict[str, Any]]: | |
| """Parse the *first* mappingβliteral in `text`. | |
| β’ Accepts **strict JSON** or Pythonβstyle singleβquoted dicts. | |
| β’ Ignores markdown fences / leading commentary. | |
| """ | |
| import re, json, ast | |
| # Strip ``` fences if any | |
| if text.strip().startswith("```"): | |
| text = re.split(r"```+", text.strip(), maxsplit=2)[1] | |
| # Find the first {...} | |
| brace, start = 0, None | |
| for i, ch in enumerate(text): | |
| if ch == '{': | |
| if brace == 0: | |
| start = i | |
| brace += 1 | |
| elif ch == '}' and brace: | |
| brace -= 1 | |
| if brace == 0 and start is not None: | |
| candidate = text[start:i+1] | |
| # First try strict JSON | |
| try: | |
| return json.loads(candidate) | |
| except json.JSONDecodeError: | |
| # Fallback: Python literal (handles single quotes) | |
| try: | |
| obj = ast.literal_eval(candidate) | |
| return obj if isinstance(obj, dict) else None | |
| except Exception: | |
| return None | |
| return None | |
| # def brief(d: Dict[str, Any]) -> str: | |
| # for k in ("wiki_result", "ocr_result", "transcript"): | |
| # if k in d: | |
| # return f"{k}: {str(d[k])[:160].replace('\n', ' ')}β¦" | |
| # return "(no output)" | |
| # βββββββββββββββββββββββββββ Agent state β¬ βββββββββββββββββββββββββββββββ | |
| # βββββββββββββββββββββββββββββ Nodes β¬ βββββββββββββββββββββββββββββββββββ | |
| def tool_selector(state: AgentState) -> AgentState: | |
| """Ask the LLM what to do next (wiki / ocr / audio / excel / final).""" | |
| if state.tool_calls >= MAX_TOOL_CALLS: | |
| state.add(SystemMessage(content="You have reached the maximum number of tool calls. Use the already gathered information to answer the question.")) | |
| state.next_action = "final" | |
| return state | |
| prompt = SystemMessage( | |
| content=( | |
| "Reply with ONE JSON only (no markdown). Choices:\n" | |
| " {'action':'wiki','query':'β¦'}\n" | |
| " {'action':'ocr'}\n" | |
| " {'action':'audio'}\n" | |
| " {'action':'excel'}\n" | |
| " {'action':'final'}\n" | |
| "if the tool you want isnt listed above, return {'action':'final'}" | |
| ) | |
| ) | |
| raw = LLM(state.messages + [prompt]).content.strip() | |
| # print(f"Tool selector response: {raw}") | |
| state.add(AIMessage(content=raw)) | |
| parsed = safe_json(raw) | |
| # parsed = json.loads(raw) | |
| # print("parsed : ", parsed) | |
| # print(f"Parsed: {parsed}, type: {type(parsed)}") | |
| if not parsed or "action" not in parsed: | |
| state.next_action = "final" | |
| return state | |
| # print("reached here") | |
| state.next_action = parsed["action"] | |
| state.query = parsed.get("query") | |
| return state | |
| # ------------- tool adapters ------------- | |
| def wiki_tool(state: AgentState) -> AgentState: | |
| out = wikipedia_search_tool({"wiki_query": state.query or ""}) | |
| state.tool_calls += 1 | |
| state.add(SystemMessage(content=f"WIKI_TOOL_OUT: {out}")) | |
| state.next_action = None | |
| return state | |
| def ocr_tool(state: AgentState) -> AgentState: | |
| out = ocr_image_tool({"task_id": state.task_id, "ocr_path": ""}) | |
| state.tool_calls += 1 | |
| state.add(SystemMessage(content=f"OCR_TOOL_OUT: {out}")) | |
| state.next_action = None | |
| return state | |
| def audio_tool(state: AgentState) -> AgentState: | |
| out = audio_transcriber_tool({"task_id": state.task_id, "audio_path": ""}) | |
| state.tool_calls += 1 | |
| state.add(SystemMessage(content=f"AUDIO_TOOL_OUT: {out}")) | |
| state.next_action = None | |
| return state | |
| def excel_tool(state: AgentState) -> AgentState: | |
| result = parse_excel_tool({ | |
| "task_id": state.task_id, | |
| "excel_sheet_name": state.sheet or "" | |
| }) | |
| out = {"excel_result": result} | |
| state.tool_calls += 1 | |
| state.add(SystemMessage(content=f"EXCEL_TOOL_OUT: {out}")) | |
| state.next_action = None | |
| return state | |
| # ------------- final answer ------------- | |
| def final_node(state: AgentState) -> AgentState: | |
| print("reached final node") | |
| wrap = SystemMessage( | |
| content="Using everything so far, reply ONLY with {'final_answer':'β¦'}. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string." | |
| "reply **only** with " | |
| "{\"final_answer\":\"β¦\"} (no markdown, no commentary)." | |
| ) | |
| raw = LLM(state.messages + [wrap]).content.strip() | |
| # print("raw : ", raw) | |
| state.add(AIMessage(content=raw)) | |
| parsed = safe_json(raw) | |
| # print("parsed : ", parsed, "type : ", type(parsed)) | |
| state.final_answer = parsed.get("final_answer") if parsed else "Unable to parse final answer." | |
| # print("state.final_answer : ", state.final_answer) | |
| return state | |
| # βββββββββββββββββββββββββββ Graph wiring βββββββββββββββββββββββββββββββ | |
| graph = StateGraph(AgentState) | |
| # Register nodes | |
| for name, fn in [ | |
| ("tool_selector", tool_selector), | |
| ("wiki_tool", wiki_tool), | |
| ("ocr_tool", ocr_tool), | |
| ("audio_tool", audio_tool), | |
| ("excel_tool", excel_tool), | |
| ("final_node", final_node), | |
| ]: | |
| graph.add_node(name, fn) | |
| # Edges | |
| graph.add_edge(START, "tool_selector") | |
| def dispatch(state: AgentState) -> str: | |
| return { | |
| "wiki": "wiki_tool", | |
| "ocr": "ocr_tool", | |
| "audio": "audio_tool", | |
| "excel": "excel_tool", | |
| "final": "final_node", | |
| }.get(state.next_action, "final_node") | |
| graph.add_conditional_edges( | |
| "tool_selector", | |
| dispatch, | |
| { | |
| "wiki_tool": "wiki_tool", | |
| "ocr_tool": "ocr_tool", | |
| "audio_tool": "audio_tool", | |
| "excel_tool": "excel_tool", | |
| "final_node": "final_node", | |
| }, | |
| ) | |
| # tools loop back to selector | |
| for tool_name in ("wiki_tool", "ocr_tool", "audio_tool", "excel_tool"): | |
| graph.add_edge(tool_name, "tool_selector") | |
| # final_answer β END | |
| graph.add_edge("final_node", END) | |
| compiled_graph = graph.compile() | |
| # βββββββββββββββββββββββββββ Public API ββββββββββββββββββββββββββββββββ | |
| def answer(question: str, task_id: Optional[str] = None) -> str: | |
| """Run the agent and return whatever FINAL_ANSWER the graph produces.""" | |
| init_state = AgentState(question, task_id) | |
| init_state.add(SystemMessage(content="You are a helpful assistant.")) | |
| init_state.add(HumanMessage(content=question)) | |
| # IMPORTANT: invoke() returns a **new** state instance (or an AddableValuesDict), | |
| # not the object we pass in. Use the returned value to fetch final_answer. | |
| out_state = compiled_graph.invoke(init_state) | |
| if isinstance(out_state, dict): # AddableValuesDict behaves like a dict | |
| return out_state.get("final_answer", "No answer.") | |
| else: # If future versions return the dataclass | |
| return getattr(out_state, "final_answer", "No answer.") | |
| class BasicAgent: | |
| def __init__(self): | |
| print("BasicAgent initialized.") | |
| def __call__(self, question: str, task_id) -> str: | |
| # print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| # fixed_answer = "This is a default answer." | |
| # print(f"Agent returning fixed answer: {fixed_answer}") | |
| print() | |
| print() | |
| print() | |
| print() | |
| print(f"Agent received question: {question}") | |
| print() | |
| return answer(question, task_id) | |
| # return fixed_answer | |
| def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text, task_id) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| # print("LangGraph version:", langgraph.__version__) | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| # import langgraph | |
| # print("βΆοΈ LangGraph version:", langgraph.__version__) | |
| if space_host_startup: | |
| print(f"β SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("βΉοΈ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"β SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) |