Spaces:
Sleeping
Sleeping
File size: 18,015 Bytes
ed2e8a5 10e9b7d eccf8e4 3c4371f 5f605c3 1f5cba5 04bd45b 1f5cba5 e2bc6df 9fb6d05 1f5cba5 e80aab9 3db6293 e80aab9 a03e926 84345bd 4f25f4e 84345bd 4f25f4e cd98238 b8a605f 4f25f4e 0eb233d 4f25f4e 0e29657 4f25f4e 0e29657 574672f 4f25f4e 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 574672f 41bbc94 31e0eff 0fed708 9e2c73e 793ee73 4f25f4e 793ee73 b9bb826 31e0eff 4f25f4e 31e0eff 4f25f4e c30265f 4f25f4e a18a60e 319e085 b8a605f 4f25f4e 5e51a6b 4f25f4e 41bbc94 5e51a6b 4f25f4e 575e17c 4f25f4e 9e2c73e 4f25f4e 9e2c73e 4f25f4e 9e2c73e 4f25f4e 9e2c73e 4f25f4e 0018be8 575e17c 4f25f4e f1bb56b 4f25f4e 5e51a6b 4f25f4e 5e51a6b 4f25f4e 5e51a6b 4f25f4e d714e29 4f25f4e d714e29 0e29657 31e0eff 4f25f4e ac343ac 0018be8 4f25f4e 0018be8 b8a605f 0e29657 4f25f4e 0018be8 4f25f4e 0e29657 4f25f4e 0018be8 d714e29 4f25f4e 37188c1 801749c 0e29657 31e0eff 0e29657 d849921 0fed708 84345bd 4288fbd 0e29657 31243f4 5166389 c7a6db7 2f80942 a89d475 0018be8 c7a6db7 4021bf3 1f5cba5 b90251f 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 b177367 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 0c482eb 7d65c66 3c4371f 31243f4 5166389 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 77f790c 3c4371f 7d65c66 3c4371f 7d65c66 3a178ff 3f7f23e 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
from __future__ import annotations
import os
import gradio as gr
import requests
import pandas as pd
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Create a ToolNode that knows about your web_search function
import json
from state import AgentState
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
import json
from typing import Any, Dict, List, Optional
# βββββββββββββββββββββββββββ External tools ββββββββββββββββββββββββββββββ
from tools import (
wikipedia_search_tool,
ocr_image_tool,
audio_transcriber_tool,
parse_excel_tool
)
# βββββββββββββββββββββββββββ Configuration βββββββββββββββββββββββββββββββ
LLM = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.0)
MAX_TOOL_CALLS = 5
# βββββββββββββββββββββββββββ Helper utilities ββββββββββββββββββββββββββββ
def safe_json(text: str) -> Optional[Dict[str, Any]]:
"""Parse the *first* mappingβliteral in `text`.
β’ Accepts **strict JSON** or Pythonβstyle singleβquoted dicts.
β’ Ignores markdown fences / leading commentary.
"""
import re, json, ast
# Strip ``` fences if any
if text.strip().startswith("```"):
text = re.split(r"```+", text.strip(), maxsplit=2)[1]
# Find the first {...}
brace, start = 0, None
for i, ch in enumerate(text):
if ch == '{':
if brace == 0:
start = i
brace += 1
elif ch == '}' and brace:
brace -= 1
if brace == 0 and start is not None:
candidate = text[start:i+1]
# First try strict JSON
try:
return json.loads(candidate)
except json.JSONDecodeError:
# Fallback: Python literal (handles single quotes)
try:
obj = ast.literal_eval(candidate)
return obj if isinstance(obj, dict) else None
except Exception:
return None
return None
# def brief(d: Dict[str, Any]) -> str:
# for k in ("wiki_result", "ocr_result", "transcript"):
# if k in d:
# return f"{k}: {str(d[k])[:160].replace('\n', ' ')}β¦"
# return "(no output)"
# βββββββββββββββββββββββββββ Agent state β¬ βββββββββββββββββββββββββββββββ
# βββββββββββββββββββββββββββββ Nodes β¬ βββββββββββββββββββββββββββββββββββ
def tool_selector(state: AgentState) -> AgentState:
"""Ask the LLM what to do next (wiki / ocr / audio / excel / final)."""
if state.tool_calls >= MAX_TOOL_CALLS:
state.add(SystemMessage(content="You have reached the maximum number of tool calls. Use the already gathered information to answer the question."))
state.next_action = "final"
return state
prompt = SystemMessage(
content=(
"Reply with ONE JSON only (no markdown). Choices:\n"
" {'action':'wiki','query':'β¦'}\n"
" {'action':'ocr'}\n"
" {'action':'audio'}\n"
" {'action':'excel'}\n"
" {'action':'final'}\n"
"if the tool you want isnt listed above, return {'action':'final'}"
)
)
raw = LLM(state.messages + [prompt]).content.strip()
# print(f"Tool selector response: {raw}")
state.add(AIMessage(content=raw))
parsed = safe_json(raw)
# parsed = json.loads(raw)
# print("parsed : ", parsed)
# print(f"Parsed: {parsed}, type: {type(parsed)}")
if not parsed or "action" not in parsed:
state.next_action = "final"
return state
# print("reached here")
state.next_action = parsed["action"]
state.query = parsed.get("query")
return state
# ------------- tool adapters -------------
def wiki_tool(state: AgentState) -> AgentState:
out = wikipedia_search_tool({"wiki_query": state.query or ""})
state.tool_calls += 1
state.add(SystemMessage(content=f"WIKI_TOOL_OUT: {out}"))
state.next_action = None
return state
def ocr_tool(state: AgentState) -> AgentState:
out = ocr_image_tool({"task_id": state.task_id, "ocr_path": ""})
state.tool_calls += 1
state.add(SystemMessage(content=f"OCR_TOOL_OUT: {out}"))
state.next_action = None
return state
def audio_tool(state: AgentState) -> AgentState:
out = audio_transcriber_tool({"task_id": state.task_id, "audio_path": ""})
state.tool_calls += 1
state.add(SystemMessage(content=f"AUDIO_TOOL_OUT: {out}"))
state.next_action = None
return state
def excel_tool(state: AgentState) -> AgentState:
result = parse_excel_tool({
"task_id": state.task_id,
"excel_sheet_name": state.sheet or ""
})
out = {"excel_result": result}
state.tool_calls += 1
state.add(SystemMessage(content=f"EXCEL_TOOL_OUT: {out}"))
state.next_action = None
return state
# ------------- final answer -------------
def final_node(state: AgentState) -> AgentState:
print("reached final node")
wrap = SystemMessage(
content="Using everything so far, reply ONLY with {'final_answer':'β¦'}. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
"reply **only** with "
"{\"final_answer\":\"β¦\"} (no markdown, no commentary)."
)
raw = LLM(state.messages + [wrap]).content.strip()
# print("raw : ", raw)
state.add(AIMessage(content=raw))
parsed = safe_json(raw)
# print("parsed : ", parsed, "type : ", type(parsed))
state.final_answer = parsed.get("final_answer") if parsed else "Unable to parse final answer."
# print("state.final_answer : ", state.final_answer)
return state
# βββββββββββββββββββββββββββ Graph wiring βββββββββββββββββββββββββββββββ
graph = StateGraph(AgentState)
# Register nodes
for name, fn in [
("tool_selector", tool_selector),
("wiki_tool", wiki_tool),
("ocr_tool", ocr_tool),
("audio_tool", audio_tool),
("excel_tool", excel_tool),
("final_node", final_node),
]:
graph.add_node(name, fn)
# Edges
graph.add_edge(START, "tool_selector")
def dispatch(state: AgentState) -> str:
return {
"wiki": "wiki_tool",
"ocr": "ocr_tool",
"audio": "audio_tool",
"excel": "excel_tool",
"final": "final_node",
}.get(state.next_action, "final_node")
graph.add_conditional_edges(
"tool_selector",
dispatch,
{
"wiki_tool": "wiki_tool",
"ocr_tool": "ocr_tool",
"audio_tool": "audio_tool",
"excel_tool": "excel_tool",
"final_node": "final_node",
},
)
# tools loop back to selector
for tool_name in ("wiki_tool", "ocr_tool", "audio_tool", "excel_tool"):
graph.add_edge(tool_name, "tool_selector")
# final_answer β END
graph.add_edge("final_node", END)
compiled_graph = graph.compile()
# βββββββββββββββββββββββββββ Public API ββββββββββββββββββββββββββββββββ
def answer(question: str, task_id: Optional[str] = None) -> str:
"""Run the agent and return whatever FINAL_ANSWER the graph produces."""
init_state = AgentState(question, task_id)
init_state.add(SystemMessage(content="You are a helpful assistant."))
init_state.add(HumanMessage(content=question))
# IMPORTANT: invoke() returns a **new** state instance (or an AddableValuesDict),
# not the object we pass in. Use the returned value to fetch final_answer.
out_state = compiled_graph.invoke(init_state)
if isinstance(out_state, dict): # AddableValuesDict behaves like a dict
return out_state.get("final_answer", "No answer.")
else: # If future versions return the dataclass
return getattr(out_state, "final_answer", "No answer.")
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str, task_id) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
print()
print()
print()
print()
print(f"Agent received question: {question}")
print()
return answer(question, task_id)
# return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text, task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
# print("LangGraph version:", langgraph.__version__)
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# import langgraph
# print("βΆοΈ LangGraph version:", langgraph.__version__)
if space_host_startup:
print(f"β
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"β
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |