File size: 18,015 Bytes
ed2e8a5
10e9b7d
 
eccf8e4
3c4371f
5f605c3
1f5cba5
04bd45b
1f5cba5
e2bc6df
9fb6d05
1f5cba5
e80aab9
3db6293
e80aab9
a03e926
84345bd
4f25f4e
84345bd
4f25f4e
cd98238
b8a605f
4f25f4e
 
 
 
 
 
 
0eb233d
4f25f4e
 
 
0e29657
4f25f4e
0e29657
574672f
4f25f4e
574672f
 
 
 
41bbc94
574672f
41bbc94
574672f
41bbc94
574672f
41bbc94
574672f
 
41bbc94
 
574672f
41bbc94
574672f
 
 
 
41bbc94
574672f
41bbc94
574672f
41bbc94
574672f
 
 
 
 
 
41bbc94
31e0eff
0fed708
9e2c73e
 
 
 
 
793ee73
4f25f4e
793ee73
b9bb826
31e0eff
4f25f4e
31e0eff
4f25f4e
 
 
 
 
 
c30265f
4f25f4e
 
 
 
 
 
 
 
a18a60e
319e085
b8a605f
4f25f4e
5e51a6b
4f25f4e
41bbc94
 
 
5e51a6b
4f25f4e
 
 
575e17c
4f25f4e
 
 
 
 
 
 
 
 
9e2c73e
4f25f4e
 
 
 
 
 
 
9e2c73e
4f25f4e
 
 
 
 
 
 
9e2c73e
4f25f4e
 
 
 
 
 
 
 
 
 
9e2c73e
4f25f4e
 
 
 
 
 
0018be8
575e17c
4f25f4e
 
f1bb56b
 
4f25f4e
 
5e51a6b
4f25f4e
 
5e51a6b
4f25f4e
5e51a6b
4f25f4e
d714e29
4f25f4e
d714e29
0e29657
 
31e0eff
4f25f4e
 
 
 
 
ac343ac
0018be8
4f25f4e
 
 
 
 
 
 
 
 
 
 
0018be8
 
 
b8a605f
0e29657
4f25f4e
 
 
 
 
 
 
0018be8
4f25f4e
0e29657
 
4f25f4e
 
 
 
 
0018be8
d714e29
4f25f4e
 
 
 
37188c1
801749c
 
 
 
 
 
 
 
 
 
 
 
 
 
0e29657
31e0eff
 
0e29657
 
d849921
0fed708
84345bd
4288fbd
0e29657
31243f4
 
 
5166389
c7a6db7
 
 
2f80942
 
 
 
 
 
a89d475
 
0018be8
c7a6db7
4021bf3
1f5cba5
 
 
 
 
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
0c482eb
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
5166389
7d65c66
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
77f790c
3c4371f
7d65c66
3c4371f
7d65c66
3a178ff
3f7f23e
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
from __future__ import annotations
import os
import gradio as gr
import requests
import pandas as pd
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Create a ToolNode that knows about your web_search function
import json
from state import AgentState

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"



import json

from typing import Any, Dict, List, Optional


# ─────────────────────────── External tools ──────────────────────────────
from tools import (
    wikipedia_search_tool,
    ocr_image_tool,
    audio_transcriber_tool,
    parse_excel_tool
)

# ─────────────────────────── Configuration ───────────────────────────────
LLM = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.0)
MAX_TOOL_CALLS = 5

# ─────────────────────────── Helper utilities ────────────────────────────


def safe_json(text: str) -> Optional[Dict[str, Any]]:
    """Parse the *first* mapping‑literal in `text`.

    β€’ Accepts **strict JSON** or Python‑style single‑quoted dicts.
    β€’ Ignores markdown fences / leading commentary.
    """
    import re, json, ast

    # Strip ``` fences if any
    if text.strip().startswith("```"):
        text = re.split(r"```+", text.strip(), maxsplit=2)[1]

    # Find the first {...}
    brace, start = 0, None
    for i, ch in enumerate(text):
        if ch == '{':
            if brace == 0:
                start = i
            brace += 1
        elif ch == '}' and brace:
            brace -= 1
            if brace == 0 and start is not None:
                candidate = text[start:i+1]
                # First try strict JSON
                try:
                    return json.loads(candidate)
                except json.JSONDecodeError:
                    # Fallback: Python literal (handles single quotes)
                    try:
                        obj = ast.literal_eval(candidate)
                        return obj if isinstance(obj, dict) else None
                    except Exception:
                        return None
    return None


# def brief(d: Dict[str, Any]) -> str:
#     for k in ("wiki_result", "ocr_result", "transcript"):
#         if k in d:
#             return f"{k}: {str(d[k])[:160].replace('\n', ' ')}…"
#     return "(no output)"

# ─────────────────────────── Agent state ⬇ ───────────────────────────────



# ───────────────────────────── Nodes  ⬇ ───────────────────────────────────

def tool_selector(state: AgentState) -> AgentState:
    """Ask the LLM what to do next (wiki / ocr / audio / excel / final)."""
    if state.tool_calls >= MAX_TOOL_CALLS:
        state.add(SystemMessage(content="You have reached the maximum number of tool calls. Use the already gathered information to answer the question."))
        state.next_action = "final"
        return state

    prompt = SystemMessage(
        content=(
            "Reply with ONE JSON only (no markdown). Choices:\n"
            "  {'action':'wiki','query':'…'}\n"
            "  {'action':'ocr'}\n"
            "  {'action':'audio'}\n"
            "  {'action':'excel'}\n"
            "  {'action':'final'}\n"
            "if the tool you want isnt listed above, return {'action':'final'}"
        )
    )
    raw = LLM(state.messages + [prompt]).content.strip()
    # print(f"Tool selector response: {raw}")
    state.add(AIMessage(content=raw))
    parsed = safe_json(raw)
    # parsed = json.loads(raw)
    # print("parsed : ", parsed)
    # print(f"Parsed: {parsed},  type: {type(parsed)}")
    if not parsed or "action" not in parsed:
        state.next_action = "final"
        return state
    # print("reached here")
    state.next_action = parsed["action"]
    state.query = parsed.get("query")
    return state

# ------------- tool adapters -------------

def wiki_tool(state: AgentState) -> AgentState:
    out = wikipedia_search_tool({"wiki_query": state.query or ""})
    state.tool_calls += 1
    state.add(SystemMessage(content=f"WIKI_TOOL_OUT: {out}"))
    state.next_action = None
    return state


def ocr_tool(state: AgentState) -> AgentState:
    out = ocr_image_tool({"task_id": state.task_id, "ocr_path": ""})
    state.tool_calls += 1
    state.add(SystemMessage(content=f"OCR_TOOL_OUT: {out}"))
    state.next_action = None
    return state


def audio_tool(state: AgentState) -> AgentState:
    out = audio_transcriber_tool({"task_id": state.task_id, "audio_path": ""})
    state.tool_calls += 1
    state.add(SystemMessage(content=f"AUDIO_TOOL_OUT: {out}"))
    state.next_action = None
    return state

def excel_tool(state: AgentState) -> AgentState:
    result = parse_excel_tool({
        "task_id": state.task_id,
        "excel_sheet_name": state.sheet or ""
    })
    out = {"excel_result": result}
    state.tool_calls += 1
    state.add(SystemMessage(content=f"EXCEL_TOOL_OUT: {out}"))
    state.next_action = None
    return state


# ------------- final answer -------------

def final_node(state: AgentState) -> AgentState:
    print("reached final node")
    wrap = SystemMessage(
        content="Using everything so far, reply ONLY with {'final_answer':'…'}. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."
        "reply **only** with "
        "{\"final_answer\":\"…\"} (no markdown, no commentary)."
    )
    raw = LLM(state.messages + [wrap]).content.strip()
    # print("raw : ", raw)
    state.add(AIMessage(content=raw))
    parsed = safe_json(raw)
    # print("parsed : ", parsed, "type : ", type(parsed))
    state.final_answer = parsed.get("final_answer") if parsed else "Unable to parse final answer."
    # print("state.final_answer : ", state.final_answer)
    return state

# ─────────────────────────── Graph wiring ───────────────────────────────

graph = StateGraph(AgentState)

# Register nodes
for name, fn in [
    ("tool_selector", tool_selector),
    ("wiki_tool", wiki_tool),
    ("ocr_tool", ocr_tool),
    ("audio_tool", audio_tool),
    ("excel_tool", excel_tool),
    ("final_node", final_node),
]:
    graph.add_node(name, fn)

# Edges
graph.add_edge(START, "tool_selector")

def dispatch(state: AgentState) -> str:
    return {
        "wiki": "wiki_tool",
        "ocr": "ocr_tool",
        "audio": "audio_tool",
        "excel": "excel_tool",
        "final": "final_node",
    }.get(state.next_action, "final_node")

graph.add_conditional_edges(
    "tool_selector",
    dispatch,
    {
        "wiki_tool": "wiki_tool",
        "ocr_tool": "ocr_tool",
        "audio_tool": "audio_tool",
        "excel_tool": "excel_tool",
        "final_node": "final_node",
    },
)

# tools loop back to selector
for tool_name in ("wiki_tool", "ocr_tool", "audio_tool", "excel_tool"):
    graph.add_edge(tool_name, "tool_selector")

# final_answer β†’ END
graph.add_edge("final_node", END)

compiled_graph = graph.compile()

# ─────────────────────────── Public API  ────────────────────────────────

def answer(question: str, task_id: Optional[str] = None) -> str:
    """Run the agent and return whatever FINAL_ANSWER the graph produces."""
    init_state = AgentState(question, task_id)
    init_state.add(SystemMessage(content="You are a helpful assistant."))
    init_state.add(HumanMessage(content=question))

    # IMPORTANT: invoke() returns a **new** state instance (or an AddableValuesDict),
    # not the object we pass in.  Use the returned value to fetch final_answer.
    out_state = compiled_graph.invoke(init_state)

    if isinstance(out_state, dict):        # AddableValuesDict behaves like a dict
        return out_state.get("final_answer", "No answer.")
    else:                                  # If future versions return the dataclass
        return getattr(out_state, "final_answer", "No answer.")











class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str, task_id) -> str:
        # print(f"Agent received question (first 50 chars): {question[:50]}...")
        # fixed_answer = "This is a default answer."
        # print(f"Agent returning fixed answer: {fixed_answer}")
        print()
        print()
        print()
        print()
        
        
        print(f"Agent received question: {question}")
        print()
        return answer(question, task_id)
        # return fixed_answer






def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, task_id)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    # print("LangGraph version:", langgraph.__version__) 
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
    # import langgraph
    # print("β–ΆοΈŽ LangGraph version:", langgraph.__version__)
    if space_host_startup:
        print(f"βœ… SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"βœ… SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)