Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,33 +26,26 @@ tool_node = ToolNode([ocr_image_tool, parse_excel_tool, web_search_tool])
|
|
26 |
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0)
|
27 |
|
28 |
# agent = create_react_agent(model=llm, tools=tool_node)
|
|
|
|
|
29 |
def plan_node(state: AgentState) -> AgentState:
|
30 |
"""
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
• ocr_path
|
35 |
-
• excel_path (and excel_sheet_name)
|
36 |
-
• final_answer
|
37 |
-
The LLM must return a bare Python‐dict literal containing exactly that one key.
|
38 |
"""
|
39 |
-
# 1)
|
40 |
prior_msgs = state.get("messages", [])
|
41 |
-
|
42 |
-
# 2) Extract the last HumanMessage content (the user question)
|
43 |
user_input = ""
|
44 |
for msg in reversed(prior_msgs):
|
45 |
if isinstance(msg, HumanMessage):
|
46 |
user_input = msg.content
|
47 |
break
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
# 4) Append a SystemMessage explaining how to return exactly one key
|
53 |
-
explanation = SystemMessage(
|
54 |
content=(
|
55 |
-
"You can set exactly one of these keys in a Python dict
|
56 |
" • web_search_query: <search terms>\n"
|
57 |
" • ocr_path: <path to an image file>\n"
|
58 |
" • excel_path: <path to a .xlsx file>\n"
|
@@ -62,17 +55,17 @@ def plan_node(state: AgentState) -> AgentState:
|
|
62 |
"Respond with only that Python dict literal—no extra text or explanation."
|
63 |
)
|
64 |
)
|
|
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
llm_response = llm(prompt_messages)
|
69 |
llm_out = llm_response.content.strip()
|
70 |
|
71 |
-
#
|
72 |
try:
|
73 |
parsed = eval(llm_out, {}, {})
|
74 |
if isinstance(parsed, dict):
|
75 |
-
partial: AgentState = {"messages":
|
76 |
allowed = {
|
77 |
"web_search_query",
|
78 |
"ocr_path",
|
@@ -87,49 +80,55 @@ def plan_node(state: AgentState) -> AgentState:
|
|
87 |
except Exception:
|
88 |
pass
|
89 |
|
90 |
-
#
|
91 |
return {
|
92 |
-
"messages":
|
93 |
"final_answer": "Sorry, I could not parse your intent."
|
94 |
}
|
95 |
|
96 |
-
|
|
|
97 |
def finalize_node(state: AgentState) -> AgentState:
|
98 |
"""
|
99 |
-
|
100 |
-
|
101 |
-
- Possibly state['web_search_result'] or state['ocr_result'] or state['excel_result'] is set.
|
102 |
-
- Or state['final_answer'] is already set (if plan_node decided no tool was needed).
|
103 |
-
|
104 |
-
We append any tool results as SystemMessages, then prompt the LLM for one final answer.
|
105 |
"""
|
106 |
-
# 1)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
if
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
if state.get("final_answer") is not None:
|
119 |
return {"final_answer": state["final_answer"]}
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
return {"final_answer": llm_response.content.strip()}
|
125 |
|
126 |
-
|
|
|
127 |
tool_node = ToolNode([web_search_tool, ocr_image_tool, parse_excel_tool])
|
128 |
|
129 |
-
# ─── 5) Build
|
130 |
graph = StateGraph(AgentState)
|
131 |
|
132 |
-
# 5.a) Register
|
133 |
graph.add_node("plan", plan_node)
|
134 |
graph.add_node("tools", tool_node)
|
135 |
graph.add_node("run_tools", run_tools)
|
@@ -138,7 +137,7 @@ graph.add_node("finalize", finalize_node)
|
|
138 |
# 5.b) Wire START → plan
|
139 |
graph.add_edge(START, "plan")
|
140 |
|
141 |
-
# 5.c) plan → conditional: if any tool key
|
142 |
def route_plan(plan_out: AgentState) -> str:
|
143 |
if plan_out.get("web_search_query") or plan_out.get("ocr_path") or plan_out.get("excel_path"):
|
144 |
return "tools"
|
@@ -150,24 +149,24 @@ graph.add_conditional_edges(
|
|
150 |
{"tools": "tools", "finalize": "finalize"}
|
151 |
)
|
152 |
|
153 |
-
# 5.d)
|
154 |
graph.add_edge("tools", "run_tools")
|
155 |
|
156 |
-
# 5.e)
|
157 |
graph.add_edge("run_tools", "finalize")
|
158 |
|
159 |
-
# 5.f)
|
160 |
graph.add_edge("finalize", END)
|
161 |
|
162 |
compiled_graph = graph.compile()
|
163 |
|
164 |
-
|
|
|
165 |
def respond_to_input(user_input: str) -> str:
|
166 |
"""
|
167 |
-
|
168 |
-
|
169 |
"""
|
170 |
-
# 1) SystemMessage describing the tools
|
171 |
system_msg = SystemMessage(
|
172 |
content=(
|
173 |
"You have access to exactly these tools:\n"
|
@@ -183,24 +182,15 @@ def respond_to_input(user_input: str) -> str:
|
|
183 |
"Respond with only that Python dict literal—no extra text."
|
184 |
)
|
185 |
)
|
186 |
-
# 2) HumanMessage wrapping the user’s question
|
187 |
human_msg = HumanMessage(content=user_input)
|
188 |
|
189 |
-
# 3) Build initial_state so that "messages" = [system_msg, human_msg]
|
190 |
initial_state: AgentState = {"messages": [system_msg, human_msg]}
|
191 |
-
|
192 |
-
# 4) Invoke the graph (no second argument needed)
|
193 |
final_state = compiled_graph.invoke(initial_state)
|
194 |
-
|
195 |
-
# 5) Return the "final_answer" or a fallback
|
196 |
return final_state.get("final_answer", "Error: No final answer generated.")
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
print("BasicAgent initialized.")
|
202 |
-
def __call__(self, question: str) -> str:
|
203 |
-
return respond_to_input(question)
|
204 |
class BasicAgent:
|
205 |
def __init__(self):
|
206 |
print("BasicAgent initialized.")
|
|
|
26 |
llm = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.0)
|
27 |
|
28 |
# agent = create_react_agent(model=llm, tools=tool_node)
|
29 |
+
|
30 |
+
# ─── 2) Revised plan_node ───
|
31 |
def plan_node(state: AgentState) -> AgentState:
|
32 |
"""
|
33 |
+
Look at the last HumanMessage in state['messages'] to get user_input.
|
34 |
+
Then call llm with exactly [SystemMessage, HumanMessage(user_input)] so
|
35 |
+
we never feed in a list lacking an AIMessage internally.
|
|
|
|
|
|
|
|
|
36 |
"""
|
37 |
+
# 1) Find the last HumanMessage from prior history
|
38 |
prior_msgs = state.get("messages", [])
|
|
|
|
|
39 |
user_input = ""
|
40 |
for msg in reversed(prior_msgs):
|
41 |
if isinstance(msg, HumanMessage):
|
42 |
user_input = msg.content
|
43 |
break
|
44 |
|
45 |
+
# 2) Build a fresh SystemMessage explaining exactly one dict key
|
46 |
+
system_msg = SystemMessage(
|
|
|
|
|
|
|
47 |
content=(
|
48 |
+
"You can set exactly one of these keys in a Python dict and nothing else:\n"
|
49 |
" • web_search_query: <search terms>\n"
|
50 |
" • ocr_path: <path to an image file>\n"
|
51 |
" • excel_path: <path to a .xlsx file>\n"
|
|
|
55 |
"Respond with only that Python dict literal—no extra text or explanation."
|
56 |
)
|
57 |
)
|
58 |
+
human_msg = HumanMessage(content=user_input)
|
59 |
|
60 |
+
# 3) Call the LLM with a brand‐new list [system_msg, human_msg]
|
61 |
+
llm_response = llm([system_msg, human_msg])
|
|
|
62 |
llm_out = llm_response.content.strip()
|
63 |
|
64 |
+
# 4) Try to parse as a Python dict
|
65 |
try:
|
66 |
parsed = eval(llm_out, {}, {})
|
67 |
if isinstance(parsed, dict):
|
68 |
+
partial: AgentState = {"messages": prior_msgs.copy()}
|
69 |
allowed = {
|
70 |
"web_search_query",
|
71 |
"ocr_path",
|
|
|
80 |
except Exception:
|
81 |
pass
|
82 |
|
83 |
+
# 5) Fallback
|
84 |
return {
|
85 |
+
"messages": prior_msgs.copy(),
|
86 |
"final_answer": "Sorry, I could not parse your intent."
|
87 |
}
|
88 |
|
89 |
+
|
90 |
+
# ─── 3) Revised finalize_node ───
|
91 |
def finalize_node(state: AgentState) -> AgentState:
|
92 |
"""
|
93 |
+
Collect any tool results from state and then ask the LLM for a final answer.
|
94 |
+
We build a fresh list of SystemMessages for tool results (no reuse of prior AIMessage).
|
|
|
|
|
|
|
|
|
95 |
"""
|
96 |
+
# 1) Create a list of SystemMessages for each available tool result
|
97 |
+
messages_for_llm = []
|
98 |
+
if state.get("web_search_result") is not None:
|
99 |
+
messages_for_llm.append(
|
100 |
+
SystemMessage(content=f"WEB_SEARCH_RESULT: {state['web_search_result']}")
|
101 |
+
)
|
102 |
+
if state.get("ocr_result") is not None:
|
103 |
+
messages_for_llm.append(
|
104 |
+
SystemMessage(content=f"OCR_RESULT: {state['ocr_result']}")
|
105 |
+
)
|
106 |
+
if state.get("excel_result") is not None:
|
107 |
+
messages_for_llm.append(
|
108 |
+
SystemMessage(content=f"EXCEL_RESULT: {state['excel_result']}")
|
109 |
+
)
|
110 |
+
|
111 |
+
# 2) If plan_node already set final_answer, return it without calling LLM again
|
112 |
if state.get("final_answer") is not None:
|
113 |
return {"final_answer": state["final_answer"]}
|
114 |
|
115 |
+
# 3) Otherwise, append our “please give final answer” SystemMessage
|
116 |
+
messages_for_llm.append(
|
117 |
+
SystemMessage(content="Please provide the final answer now.")
|
118 |
+
)
|
119 |
+
|
120 |
+
# 4) Call the LLM with our fresh list of SystemMessages
|
121 |
+
llm_response = llm(messages_for_llm)
|
122 |
return {"final_answer": llm_response.content.strip()}
|
123 |
|
124 |
+
|
125 |
+
# ─── 4) Wrap tools in a ToolNode ───
|
126 |
tool_node = ToolNode([web_search_tool, ocr_image_tool, parse_excel_tool])
|
127 |
|
128 |
+
# ─── 5) Build the graph ───
|
129 |
graph = StateGraph(AgentState)
|
130 |
|
131 |
+
# 5.a) Register nodes
|
132 |
graph.add_node("plan", plan_node)
|
133 |
graph.add_node("tools", tool_node)
|
134 |
graph.add_node("run_tools", run_tools)
|
|
|
137 |
# 5.b) Wire START → plan
|
138 |
graph.add_edge(START, "plan")
|
139 |
|
140 |
+
# 5.c) plan → conditional: if any tool key was set, go to "tools"; otherwise "finalize"
|
141 |
def route_plan(plan_out: AgentState) -> str:
|
142 |
if plan_out.get("web_search_query") or plan_out.get("ocr_path") or plan_out.get("excel_path"):
|
143 |
return "tools"
|
|
|
149 |
{"tools": "tools", "finalize": "finalize"}
|
150 |
)
|
151 |
|
152 |
+
# 5.d) tools → run_tools
|
153 |
graph.add_edge("tools", "run_tools")
|
154 |
|
155 |
+
# 5.e) run_tools → finalize
|
156 |
graph.add_edge("run_tools", "finalize")
|
157 |
|
158 |
+
# 5.f) finalize → END
|
159 |
graph.add_edge("finalize", END)
|
160 |
|
161 |
compiled_graph = graph.compile()
|
162 |
|
163 |
+
|
164 |
+
# ─── 6) respond_to_input ───
|
165 |
def respond_to_input(user_input: str) -> str:
|
166 |
"""
|
167 |
+
Seed state['messages'] with a SystemMessage (tools description) + HumanMessage(user_input).
|
168 |
+
Then invoke the graph; return the final_answer from the resulting state.
|
169 |
"""
|
|
|
170 |
system_msg = SystemMessage(
|
171 |
content=(
|
172 |
"You have access to exactly these tools:\n"
|
|
|
182 |
"Respond with only that Python dict literal—no extra text."
|
183 |
)
|
184 |
)
|
|
|
185 |
human_msg = HumanMessage(content=user_input)
|
186 |
|
|
|
187 |
initial_state: AgentState = {"messages": [system_msg, human_msg]}
|
|
|
|
|
188 |
final_state = compiled_graph.invoke(initial_state)
|
|
|
|
|
189 |
return final_state.get("final_answer", "Error: No final answer generated.")
|
190 |
|
191 |
+
|
192 |
+
|
193 |
+
|
|
|
|
|
|
|
194 |
class BasicAgent:
|
195 |
def __init__(self):
|
196 |
print("BasicAgent initialized.")
|