Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,11 +13,7 @@ from langgraph.graph import StateGraph, START, END
|
|
13 |
from langgraph.graph.message import add_messages
|
14 |
|
15 |
# Create a ToolNode that knows about your web_search function
|
16 |
-
search_node = ToolNode([web_search])
|
17 |
|
18 |
-
excel_tool_node = ToolNode([parse_excel])
|
19 |
-
|
20 |
-
image_tool_node = ToolNode([ocr_image])
|
21 |
# (Keep Constants as is)
|
22 |
# --- Constants ---
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -26,9 +22,79 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
26 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
27 |
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
|
@@ -36,10 +102,11 @@ class BasicAgent:
|
|
36 |
def __init__(self):
|
37 |
print("BasicAgent initialized.")
|
38 |
def __call__(self, question: str) -> str:
|
39 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
40 |
-
fixed_answer = "This is a default answer."
|
41 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
42 |
-
return
|
|
|
43 |
|
44 |
|
45 |
|
|
|
13 |
from langgraph.graph.message import add_messages
|
14 |
|
15 |
# Create a ToolNode that knows about your web_search function
|
|
|
16 |
|
|
|
|
|
|
|
17 |
# (Keep Constants as is)
|
18 |
# --- Constants ---
|
19 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
22 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
23 |
|
24 |
|
25 |
+
class AgentState(TypedDict):
|
26 |
+
messages: Annotated[list, add_messages]
|
27 |
+
question: str
|
28 |
+
answer: str
|
29 |
+
|
30 |
+
llm = ChatOpenAI(model_name="gpt-4.1-mini")
|
31 |
+
llm_node = LLMNode(llm)
|
32 |
+
|
33 |
+
# 4) Wrap the tools in a single ToolNode
|
34 |
+
# You can list as many @tool functions here as you like.
|
35 |
+
# search_node = ToolNode([web_search])
|
36 |
+
|
37 |
+
# excel_tool_node = ToolNode([parse_excel])
|
38 |
+
|
39 |
+
# image_tool_node = ToolNode([ocr_image])
|
40 |
+
tool_node = ToolNode([ocr_image, parse_excel, web_search])
|
41 |
+
|
42 |
+
# 5) Build the StateGraph
|
43 |
+
graph = StateGraph[AgentState]()
|
44 |
+
|
45 |
+
# ββββββββββββββββββββββββ
|
46 |
+
# Edge 1: START β LLM
|
47 |
+
# Wrap the user_input into state.messages
|
48 |
+
graph.add_edge(
|
49 |
+
START,
|
50 |
+
llm_node,
|
51 |
+
lambda state, user_input: {"messages": [user_input]},
|
52 |
+
name="start_to_llm",
|
53 |
+
)
|
54 |
+
|
55 |
+
# ββββββββββββββββββββββββ
|
56 |
+
# Edge 2: LLM β ToolNode
|
57 |
+
# Only fire when the LLM returns a dict with exactly "tool":"ocr_image" or "tool":"parse_excel"
|
58 |
+
# The lambda must return that dict so the ToolNode can extract its arguments.
|
59 |
+
def route_to_tool(state: AgentState, llm_out):
|
60 |
+
# Expecting llm_out to be a dict like:
|
61 |
+
# {"tool": "ocr_image", "path": "invoice.png"}
|
62 |
+
# or {"tool": "parse_excel", "path":"sales.xlsx", "sheet_name":"Sheet1"}
|
63 |
+
if isinstance(llm_out, dict) and llm_out.get("tool") in {"ocr_image", "parse_excel", "web_search"}:
|
64 |
+
return llm_out
|
65 |
+
return None # β do not invoke the tool if it's not matching
|
66 |
+
|
67 |
+
graph.add_edge(
|
68 |
+
llm_node,
|
69 |
+
tool_node,
|
70 |
+
route_to_tool,
|
71 |
+
name="llm_to_tool",
|
72 |
+
)
|
73 |
+
|
74 |
+
# ββββββββββββββββββββββββ
|
75 |
+
# Edge 3: ToolNode β LLM
|
76 |
+
# Whatever the tool returns (a string), feed that straight back into the LLM as the next turn.
|
77 |
+
graph.add_edge(
|
78 |
+
tool_node,
|
79 |
+
llm_node,
|
80 |
+
lambda state, tool_out: tool_out,
|
81 |
+
name="tool_to_llm",
|
82 |
+
)
|
83 |
+
|
84 |
+
# ββββββββββββββββββββββββ
|
85 |
+
# Edge 4: LLM β END
|
86 |
+
# Once the LLM is done reasoning (without calling any more tools), return its output string.
|
87 |
+
graph.add_edge(
|
88 |
+
llm_node,
|
89 |
+
END,
|
90 |
+
lambda state, final_str: final_str,
|
91 |
+
name="llm_to_end",
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
def respond_to_input(user_input: str) -> str:
|
96 |
+
initial_state: AgentState = {"messages": []}
|
97 |
+
return graph.run(initial_state, user_input)
|
98 |
|
99 |
|
100 |
|
|
|
102 |
def __init__(self):
|
103 |
print("BasicAgent initialized.")
|
104 |
def __call__(self, question: str) -> str:
|
105 |
+
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
106 |
+
# fixed_answer = "This is a default answer."
|
107 |
+
# print(f"Agent returning fixed answer: {fixed_answer}")
|
108 |
+
return respond_to_input(question)
|
109 |
+
# return fixed_answer
|
110 |
|
111 |
|
112 |
|