Spaces:
Sleeping
Sleeping
| # tools.py | |
| import pandas as pd | |
| from pathlib import Path | |
| import requests | |
| import regex as re | |
| import time | |
| import os | |
| from duckduckgo_search import DDGS | |
| from langchain_core.tools import tool | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| def _download_file_for_task(task_id: str, ext: str) -> str: | |
| """ | |
| Helper: attempt to GET the remote file for a given task_id. | |
| Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful, | |
| or an empty string if no file / download failed. | |
| """ | |
| print("reached _download_file_for_task") | |
| os.makedirs("hf_files", exist_ok=True) | |
| local_path = os.path.join("hf_files", f"{task_id}.{ext}") | |
| url = f"{DEFAULT_API_URL}/files/{task_id}" | |
| try: | |
| resp = requests.get(url, timeout=10) | |
| if resp.status_code == 200 and resp.content: | |
| print(f"Downloaded file from {url} to {local_path}") | |
| with open(local_path, "wb") as f: | |
| f.write(resp.content) | |
| return local_path | |
| except Exception: | |
| print(f"Error downloading file from {url} to {local_path}") | |
| pass | |
| # If we get here, either 404 or download error | |
| return "" | |
| def image_tool(task_id: str) -> str: | |
| """ | |
| Expects: task_id is a string | |
| Returns: "OCR text + brief caption or an error message" | |
| """ | |
| print("reached image_tool") | |
| # path_or_id = state.get("ocr_path", "") | |
| for ext in ("png", "jpg", "jpeg"): | |
| candidate = _download_file_for_task(task_id, ext) | |
| if candidate: | |
| local_img = candidate | |
| break | |
| if not local_img or not os.path.exists(local_img): | |
| return { | |
| "ocr_path": None, | |
| "ocr_result": "Error: No image file found (local nonexistent or download failed)." | |
| } | |
| # 2) Read raw bytes | |
| try: | |
| with open(local_img, "rb") as f: | |
| image_bytes = f.read() | |
| except Exception as e: | |
| return f"Error reading image file: {e}" | |
| # 3) Prepare HF Inference headers | |
| hf_token = os.getenv("HF_TOKEN") | |
| if not hf_token: | |
| return "Error: HUGGINGFACE_API_KEY not set in environment." | |
| headers = {"Authorization": f"Bearer {hf_token}"} | |
| # 4) Call HF’s vision-ocr to extract text | |
| ocr_text = "" | |
| try: | |
| ocr_resp = requests.post( | |
| "https://api-inference.huggingface.co/models/google/vit-ocr", | |
| headers=headers, | |
| files={"file": image_bytes}, | |
| timeout=30 | |
| ) | |
| ocr_resp.raise_for_status() | |
| ocr_json = ocr_resp.json() | |
| # The JSON has “pages” → list of blocks → “lines” → each line has “text” | |
| lines = [] | |
| for page in ocr_json.get("pages", []): | |
| for line in page.get("lines", []): | |
| lines.append(line.get("text", "").strip()) | |
| ocr_text = "\n".join(lines).strip() or "(no visible text)" | |
| except Exception as e: | |
| ocr_text = f"Error during HF OCR: {e}" | |
| # 5) Call HF’s image-captioning to get a brief description | |
| caption = "" | |
| try: | |
| cap_resp = requests.post( | |
| "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base", | |
| headers=headers, | |
| files={"file": image_bytes}, | |
| timeout=30 | |
| ) | |
| cap_resp.raise_for_status() | |
| cap_json = cap_resp.json() | |
| # The response looks like: {"generated_text": "...caption..."} | |
| caption = cap_json.get("generated_text", "").strip() | |
| if not caption: | |
| caption = "(no caption returned)" | |
| except Exception as e: | |
| caption = f"Error during HF captioning: {e}" | |
| # 6) Combine OCR + caption | |
| combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}" | |
| print("combined: ") | |
| return combined | |
| def excel_tool(task_id: str) -> str: | |
| """ | |
| Downloads <task_id>.xlsx (if any) and returns a stringified list of | |
| records from the specified sheet. No fallback to user-supplied tables. | |
| Expected keys in `task_id`: | |
| • task_id – required (used to download the file) | |
| returns: stringified list of records from the specified sheet | |
| """ | |
| print("reached excel_tool") | |
| sheet = "Sheet1" | |
| local_xlsx = _download_file_for_task(task_id, "xlsx") | |
| if not local_xlsx or not os.path.exists(local_xlsx): | |
| return "Error: Excel file not found for this task." | |
| try: | |
| xls = pd.ExcelFile(local_xlsx) | |
| df = pd.read_excel( | |
| xls, | |
| sheet_name=sheet if sheet and sheet in xls.sheet_names else xls.sheet_names[0] | |
| ) | |
| print(f"Excel file read successfully: {str(df.to_dict(orient='records'))}") | |
| return str(df.to_dict(orient="records")) | |
| except Exception as e: | |
| return f"Error reading Excel file: {e}" | |
| import openai | |
| def audio_transcriber_tool(task_id: str) -> str: | |
| """ | |
| LangGraph tool for transcribing audio via OpenAI's Whisper API. | |
| Expects: task_id is a string | |
| Returns: | |
| "<text or error message>" | |
| Always attempts to download the file for the given path or task ID. | |
| """ | |
| print("reached audio_transcriber_tool") | |
| # Always attempt to download the file, regardless of local existence | |
| local_audio = "" | |
| for ext in ("mp3", "wav", "m4a"): | |
| candidate = _download_file_for_task(task_id, ext) | |
| if candidate: | |
| local_audio = candidate | |
| break | |
| if not local_audio or not os.path.exists(local_audio): | |
| return "Error: No audio file found (download failed)." | |
| # Send to OpenAI Whisper | |
| try: | |
| openai.api_key = os.getenv("OPENAI_API_KEY") | |
| if not openai.api_key: | |
| raise RuntimeError("OPENAI_API_KEY is not set in environment.") | |
| with open(local_audio, "rb") as audio_file: | |
| print("reached openai.audio.transcriptions.create") | |
| response = openai.audio.transcriptions.create( | |
| model="whisper-1", | |
| file=audio_file, | |
| ) | |
| print("reached response") | |
| text = response.text.strip() | |
| except Exception as e: | |
| text = f"Error during transcription: {e}" | |
| print(f"Transcripted as transcript: {text}") | |
| return text | |
| # tools.py | |
| import re | |
| import requests | |
| def wikipedia_search_tool(wiki_query: str) -> str: | |
| """ | |
| LangGraph wrapper for searching Wikipedia. | |
| Expects: wiki_query is a non‐empty string. | |
| Returns: text summary of first matching page or an error message>" | |
| If no valid wiki_query is provided, returns {}. | |
| """ | |
| print("reached wikipedia search tool") | |
| query = wiki_query | |
| if not query: | |
| return {} | |
| try: | |
| # 1) Use the MediaWiki API to search for page titles matching the query | |
| search_params = { | |
| "action": "query", | |
| "list": "search", | |
| "srsearch": query, | |
| "format": "json", | |
| "utf8": 1 | |
| } | |
| search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10) | |
| search_resp.raise_for_status() | |
| search_data = search_resp.json() | |
| search_results = search_data.get("query", {}).get("search", []) | |
| # print("wikipedia: search_results",search_results) | |
| if not search_results: | |
| print(f"No Wikipedia page found for '{query}'.") | |
| return f"No Wikipedia page found for '{query}'." | |
| # 2) Take the first search result's title | |
| first_title = search_results[0].get("title", "") | |
| if not first_title: | |
| print("Unexpected format from Wikipedia search.") | |
| return "Unexpected format from Wikipedia search." | |
| # 3) Fetch the page summary for that title via the REST summary endpoint | |
| title_for_url = requests.utils.requote_uri(first_title) | |
| summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}" | |
| summary_resp = requests.get(summary_url, timeout=10) | |
| summary_resp.raise_for_status() | |
| summary_data = summary_resp.json() | |
| # 4) Extract either the "extract" field or a fallback message | |
| summary_text = summary_data.get("extract") | |
| if not summary_text: | |
| summary_text = summary_data.get("description", "No summary available.") | |
| print(f"Title: {first_title}\n\n{summary_text}") | |
| return f"Title: {first_title}\n\n{summary_text}" | |
| except requests.exceptions.RequestException as e: | |
| return f"Wikipedia search error: {e}" | |
| except Exception as e: | |
| return f"Unexpected error in wikipedia_search_tool: {e}" | |
| from langchain_openai import ChatOpenAI | |
| from langchain.schema import SystemMessage, HumanMessage | |
| LLM = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.2) | |
| def analyze_code_tool(task_id: str) -> str: | |
| """ | |
| Either task_id OR (file + task_id) | |
| Reads the code (max 400 lines / 10 kB) and asks the LLM for: | |
| • plain-language summary | |
| • list of key functions/classes | |
| • obvious bugs or style smells | |
| Returns that analysis as a string. | |
| """ | |
| print("reached analyze_code_tool") | |
| code_txt = "" | |
| if not task_id: | |
| code_txt = "No code provided." | |
| else: | |
| path = _download_file_for_task(task_id, "py") | |
| if not path: | |
| return "Error: .py file not found for this task." | |
| code_txt = Path(path).read_text(encoding="utf-8", errors="ignore") | |
| # else: | |
| # return "Error: neither snippet nor file provided." | |
| # Truncate for safety | |
| lines = code_txt.splitlines()[:400] | |
| code_sample = "\n".join(lines)[:10_000] | |
| prompt = [ | |
| SystemMessage(content="You are a senior Python code reviewer."), | |
| HumanMessage(content=( | |
| "Please analyse the following code. " | |
| "Summarise what it does, list key functions/classes, " | |
| "and point out any obvious bugs, performance issues or style problems.\n\n" | |
| f"```python\n{code_sample}\n```" | |
| "If you can then find the output of the code and return it in the output." | |
| )) | |
| ] | |
| return LLM.invoke(prompt).content.strip() | |
| # def web_search_tool(state: AgentState) -> AgentState: | |
| # """ | |
| # Expects: state["web_search_query"] is a non‐empty string. | |
| # Returns: {"web_search_query": None, "web_search_result": <string>}. | |
| # Retries up to 5 times on either a DuckDuckGo “202 Ratelimit” response or any exception (e.g. timeout). | |
| # """ | |
| # print("reached web_search_tool") | |
| # query = state.get("web_search_query", "") | |
| # if not query: | |
| # return {} # nothing to do | |
| # ddg = DDGS() | |
| # max_retries = 5 | |
| # result_text = "" | |
| # for attempt in range(1, max_retries + 1): | |
| # try: | |
| # result_text = str(ddg.text(query, max_results=5)) | |
| # except Exception as e: | |
| # # Network error or timeout—retry up to max_retries | |
| # if attempt < max_retries: | |
| # print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})") | |
| # time.sleep(4) | |
| # continue | |
| # else: | |
| # # Final attempt failed | |
| # return { | |
| # "web_search_query": None, | |
| # "web_search_result": f"Error during DuckDuckGo search: {e}" | |
| # } | |
| # # Check for DuckDuckGo rate‐limit indicator | |
| # if "202 Ratelimit" in result_text: | |
| # if attempt < max_retries: | |
| # print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})") | |
| # time.sleep(4) | |
| # continue | |
| # else: | |
| # # Final attempt still rate‐limited | |
| # break | |
| # # Successful response (no exception and no rate‐limit text) | |
| # break | |
| # return { | |
| # "web_search_query": None, | |
| # "web_search_result": result_text | |
| # } | |