Spaces:
Sleeping
Sleeping
# tools.py | |
import pandas as pd | |
# from langchain_community.tools import DuckDuckGoSearchRun | |
from pathlib import Path | |
# from PIL import Image | |
# import pytesseract | |
from old.old2state import AgentState | |
from langchain.schema import HumanMessage | |
import regex as re | |
import time | |
from duckduckgo_search import DDGS | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
def _download_file_for_task(task_id: str, ext: str) -> str: | |
""" | |
Helper: attempt to GET the remote file for a given task_id. | |
Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful, | |
or an empty string if no file / download failed. | |
""" | |
print("reached _download_file_for_task") | |
os.makedirs("hf_files", exist_ok=True) | |
local_path = os.path.join("hf_files", f"{task_id}.{ext}") | |
url = f"{DEFAULT_API_URL}/files/{task_id}" | |
try: | |
resp = requests.get(url, timeout=10) | |
if resp.status_code == 200 and resp.content: | |
print(f"Downloaded file from {url} to {local_path}") | |
with open(local_path, "wb") as f: | |
f.write(resp.content) | |
return local_path | |
except Exception: | |
pass | |
# If we get here, either 404 or download error | |
return "" | |
def web_search_tool(state: AgentState) -> AgentState: | |
""" | |
Expects: state["web_search_query"] is a non‐empty string. | |
Returns: {"web_search_query": None, "web_search_result": <string>}. | |
Retries up to 5 times on either a DuckDuckGo “202 Ratelimit” response or any exception (e.g. timeout). | |
""" | |
print("reached web_search_tool") | |
query = state.get("web_search_query", "") | |
if not query: | |
return {} # nothing to do | |
ddg = DDGS() | |
max_retries = 5 | |
result_text = "" | |
for attempt in range(1, max_retries + 1): | |
try: | |
result_text = str(ddg.text(query, max_results=5)) | |
except Exception as e: | |
# Network error or timeout—retry up to max_retries | |
if attempt < max_retries: | |
print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})") | |
time.sleep(4) | |
continue | |
else: | |
# Final attempt failed | |
return { | |
"web_search_query": None, | |
"web_search_result": f"Error during DuckDuckGo search: {e}" | |
} | |
# Check for DuckDuckGo rate‐limit indicator | |
if "202 Ratelimit" in result_text: | |
if attempt < max_retries: | |
print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})") | |
time.sleep(4) | |
continue | |
else: | |
# Final attempt still rate‐limited | |
break | |
# Successful response (no exception and no rate‐limit text) | |
break | |
return { | |
"web_search_query": None, | |
"web_search_result": result_text | |
} | |
def ocr_image_tool(state: AgentState) -> AgentState: | |
""" | |
Expects: state["ocr_path"] is either: | |
• a local image path (e.g. "./hf_files/abc.png"), OR | |
• a Task ID (e.g. "abc123"), in which case we try downloading | |
GET {DEFAULT_API_URL}/files/{task_id} with .png/.jpg/.jpeg extensions. | |
Returns: | |
{ | |
"ocr_path": None, | |
"ocr_result": "<OCR text + brief caption or an error message>" | |
} | |
""" | |
print("reached ocr_image_tool") | |
path_or_id = state.get("ocr_path", "") | |
# if not path_or_id: | |
# return {} | |
# 1) Determine local_img: either existing path_or_id or download by Task ID | |
# local_img = "" | |
# if os.path.exists(path_or_id): | |
# local_img = path_or_id | |
# else: | |
for ext in ("png", "jpg", "jpeg"): | |
candidate = _download_file_for_task(state.get("task_id"), ext) | |
if candidate: | |
local_img = candidate | |
break | |
if not local_img or not os.path.exists(local_img): | |
return { | |
"ocr_path": None, | |
"ocr_result": "Error: No image file found (local nonexistent or download failed)." | |
} | |
# 2) Read raw bytes | |
try: | |
with open(local_img, "rb") as f: | |
image_bytes = f.read() | |
except Exception as e: | |
return { | |
"ocr_path": None, | |
"ocr_result": f"Error reading image file: {e}" | |
} | |
# 3) Prepare HF Inference headers | |
hf_token = os.getenv("HF_TOKEN") | |
if not hf_token: | |
return { | |
"ocr_path": None, | |
"ocr_result": "Error: HUGGINGFACE_API_KEY not set in environment." | |
} | |
headers = {"Authorization": f"Bearer {hf_token}"} | |
# 4) Call HF’s vision-ocr to extract text | |
ocr_text = "" | |
try: | |
ocr_resp = requests.post( | |
"https://api-inference.huggingface.co/models/google/vit-ocr", | |
headers=headers, | |
files={"file": image_bytes}, | |
timeout=30 | |
) | |
ocr_resp.raise_for_status() | |
ocr_json = ocr_resp.json() | |
# The JSON has “pages” → list of blocks → “lines” → each line has “text” | |
lines = [] | |
for page in ocr_json.get("pages", []): | |
for line in page.get("lines", []): | |
lines.append(line.get("text", "").strip()) | |
ocr_text = "\n".join(lines).strip() or "(no visible text)" | |
except Exception as e: | |
ocr_text = f"Error during HF OCR: {e}" | |
# 5) Call HF’s image-captioning to get a brief description | |
caption = "" | |
try: | |
cap_resp = requests.post( | |
"https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base", | |
headers=headers, | |
files={"file": image_bytes}, | |
timeout=30 | |
) | |
cap_resp.raise_for_status() | |
cap_json = cap_resp.json() | |
# The response looks like: {"generated_text": "...caption..."} | |
caption = cap_json.get("generated_text", "").strip() | |
if not caption: | |
caption = "(no caption returned)" | |
except Exception as e: | |
caption = f"Error during HF captioning: {e}" | |
# 6) Combine OCR + caption | |
combined = f"OCR text:\n{ocr_text}\n\nImage caption:\n{caption}" | |
print("combined: ") | |
return { | |
"ocr_path": None, | |
"ocr_result": combined | |
} | |
def parse_excel_tool(state: AgentState) -> AgentState: | |
""" | |
Expects state["excel_path"] to be either: | |
• A real local .xlsx path, or | |
• A Task ID string (e.g. "abc123"), in which case we GET /files/abc123.xlsx. | |
Returns: | |
{ | |
"excel_path": None, | |
"excel_sheet_name": None, | |
"excel_result": "<stringified records or Markdown table>" | |
} | |
Always attempts to download the file for the given path or task ID. | |
""" | |
print("reached parse_excel_tool") | |
local_xlsx = _download_file_for_task(state.get("task_id"), "xlsx") | |
path_or_id = state.get("excel_path", "") | |
sheet = state.get("excel_sheet_name", "") | |
if not path_or_id: | |
return {} | |
# Always attempt to download the file, regardless of local existence | |
# If we finally have a real file, read it | |
if local_xlsx and os.path.exists(local_xlsx): | |
try: | |
print("reached excel file found") | |
xls = pd.ExcelFile(local_xlsx) | |
if sheet and sheet in xls.sheet_names: | |
df = pd.read_excel(xls, sheet_name=sheet) | |
else: | |
df = pd.read_excel(xls, sheet_name=xls.sheet_names[0]) | |
records = df.to_dict(orient="records") | |
text = str(records) | |
print("reached excel file found: ") | |
print(text) | |
print() | |
return { | |
"excel_path": None, | |
"excel_sheet_name": None, | |
"excel_result": text | |
} | |
except Exception as e: | |
print(f">>> parse_excel_tool: Error reading Excel file {local_xlsx}: {e}") | |
# Fall back to scanning for Markdown below | |
# Fallback: scan any HumanMessage for a Markdown‐style table | |
messages = state.get("messages", []) | |
table_lines = [] | |
collecting = False | |
for msg in messages: | |
if isinstance(msg, HumanMessage): | |
for line in msg.content.splitlines(): | |
if re.match(r"^\s*\|\s*[-A-Za-z0-9]", line): | |
collecting = True | |
if collecting: | |
if not re.match(r"^\s*\|", line): | |
collecting = False | |
break | |
table_lines.append(line) | |
if table_lines: | |
break | |
if not table_lines: | |
return { | |
"excel_path": None, | |
"excel_sheet_name": None, | |
"excel_result": "Error: No Excel file found and no Markdown table detected in prompt." | |
} | |
clean_rows = [row for row in table_lines if not re.match(r"^\s*\|\s*-+", row)] | |
table_block = "\n".join(clean_rows).strip() | |
print(f"Parsed excel as excel_result: {table_block}") | |
return { | |
"excel_path": None, | |
"excel_sheet_name": None, | |
"excel_result": table_block | |
} | |
import os | |
import os | |
import openai | |
from old.old2state import AgentState | |
def audio_transcriber_tool(state: AgentState) -> AgentState: | |
""" | |
LangGraph tool for transcribing audio via OpenAI's Whisper API. | |
Expects: state["audio_path"] to be either: | |
• A local file path (e.g. "./hf_files/abc.mp3"), OR | |
• A Task ID (e.g. "abc123"), in which case we try downloading | |
GET {DEFAULT_API_URL}/files/{task_id} with .mp3, .wav, .m4a extensions. | |
Returns: | |
{ | |
"audio_path": None, | |
"transcript": "<text or error message>" | |
} | |
Always attempts to download the file for the given path or task ID. | |
""" | |
print("reached audio_transcriber_tool") | |
path_or_id = state.get("audio_path", "") | |
if not path_or_id: | |
return {} | |
# Always attempt to download the file, regardless of local existence | |
local_audio = "" | |
for ext in ("mp3", "wav", "m4a"): | |
candidate = _download_file_for_task(state.get("task_id"), ext) | |
if candidate: | |
local_audio = candidate | |
break | |
if not local_audio or not os.path.exists(local_audio): | |
return { | |
"audio_path": None, | |
"transcript": "Error: No audio file found (download failed)." | |
} | |
# Send to OpenAI Whisper | |
try: | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
if not openai.api_key: | |
raise RuntimeError("OPENAI_API_KEY is not set in environment.") | |
with open(local_audio, "rb") as audio_file: | |
print("reached openai.audio.transcriptions.create") | |
response = openai.audio.transcriptions.create( | |
model="whisper-1", | |
file=audio_file, | |
) | |
print("reached response") | |
text = response.text.strip() | |
except Exception as e: | |
text = f"Error during transcription: {e}" | |
print(f"Transcripted as transcript: {text}") | |
return { | |
"audio_path": None, | |
"transcript": text | |
} | |
# tools.py | |
import re | |
import requests | |
from old.old2state import AgentState | |
def wikipedia_search_tool(state: AgentState) -> AgentState: | |
""" | |
LangGraph wrapper for searching Wikipedia. | |
Expects: state["wiki_query"] to be a non‐empty string. | |
Returns: | |
{ | |
"wiki_query": None, | |
"wiki_result": "<text summary of first matching page or an error message>" | |
} | |
If no valid wiki_query is provided, returns {}. | |
""" | |
print("reached wikipedia search tool") | |
query = state.get("wiki_query", "").strip() | |
if not query: | |
return {} | |
try: | |
# 1) Use the MediaWiki API to search for page titles matching the query | |
search_params = { | |
"action": "query", | |
"list": "search", | |
"srsearch": query, | |
"format": "json", | |
"utf8": 1 | |
} | |
search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10) | |
search_resp.raise_for_status() | |
search_data = search_resp.json() | |
search_results = search_data.get("query", {}).get("search", []) | |
# print("wikipedia: search_results",search_results) | |
if not search_results: | |
return {"wiki_query": None, "wiki_result": f"No Wikipedia page found for '{query}'."} | |
# 2) Take the first search result's title | |
first_title = search_results[0].get("title", "") | |
if not first_title: | |
return {"wiki_query": None, "wiki_result": "Unexpected format from Wikipedia search."} | |
# 3) Fetch the page summary for that title via the REST summary endpoint | |
title_for_url = requests.utils.requote_uri(first_title) | |
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}" | |
summary_resp = requests.get(summary_url, timeout=10) | |
summary_resp.raise_for_status() | |
summary_data = summary_resp.json() | |
# 4) Extract either the "extract" field or a fallback message | |
summary_text = summary_data.get("extract") | |
if not summary_text: | |
summary_text = summary_data.get("description", "No summary available.") | |
return { | |
"wiki_query": None, | |
"wiki_result": f"Title: {first_title}\n\n{summary_text}" | |
} | |
except requests.exceptions.RequestException as e: | |
return {"wiki_query": None, "wiki_result": f"Wikipedia search error: {e}"} | |
except Exception as e: | |
return {"wiki_query": None, "wiki_result": f"Unexpected error in wikipedia_search_tool: {e}"} | |
def run_tools(state: AgentState, tool_out: AgentState) -> AgentState: | |
""" | |
Merges whatever partial state the tool wrapper returned (tool_out) | |
into the main state. That is, combine previous keys with new keys: | |
new_state = { **state, **tool_out }. | |
This node should be wired as its own graph node, not as a transition function. | |
""" | |
new_state = {**state, **tool_out} | |
return new_state |