Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from langgraph.prebuilt import ToolNode | |
# from typing import Any, Dict | |
# from typing import TypedDict, Annotated | |
from langchain_openai import ChatOpenAI | |
from langgraph.graph import StateGraph, START, END | |
from langgraph.graph.message import add_messages | |
from langchain.schema import HumanMessage, SystemMessage, AIMessage | |
# Create a ToolNode that knows about your web_search function | |
import json | |
from old2state import AgentState | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
from old2tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool | |
llm = ChatOpenAI(model_name="gpt-4o-mini") | |
# agent = create_react_agent(model=llm, tools=tool_node) | |
def plan_node(state: AgentState) -> AgentState: | |
""" | |
This plan_node will ask GPT to: | |
1) First write a concise *direct* answer. | |
2) Then decide whether it’s confident enough to stop (return {"final_answer": ...}) | |
or if it needs to verify via one tool (return exactly one of {"wiki_query":...}, | |
{"web_search_query":...}, {"ocr_path":...}, {"excel_path":...,"excel_sheet_name":...}, or {"audio_path":...}). | |
""" | |
prior_msgs = state.get("messages", []) | |
user_input = "" | |
for msg in reversed(prior_msgs): | |
if isinstance(msg, HumanMessage): | |
user_input = msg.content | |
break | |
# (1) Build a fresh SystemMessage that tells the LLM exactly how to self‐evaluate | |
system_msg = SystemMessage( | |
content=( | |
"You are an agent that must do two things in a single JSON output:\n\n" | |
" 1) Produce a concise, direct answer to the user’s question (no explanation, just the answer). \n" | |
" 2) Judge whether that answer is reliable. \n" | |
" • If you are fully confident and do NOT need any external verification, return exactly:\n" | |
" {\"final_answer\":\"<your concise answer>\"}\n" | |
" and nothing else.\n" | |
" • If you think you need to verify or look something up first, return exactly one of the following (and nothing else):\n" | |
" {\"wiki_query\":\"<search terms for Wikipedia>\"}\n" | |
" {\"web_search_query\":\"<search terms>\"}\n" | |
" {\"ocr_path\":\"<local image path or task_id>\"}\n" | |
" {\"excel_path\":\"<local .xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n" | |
" {\"audio_path\":\"<local audio path or task_id>\"}\n\n" | |
" You must pick exactly one key—either final_answer or exactly one tool key.\n" | |
" Do NOT wrap it in any markdown or extra text. Only output a single JSON object.\n" | |
"\n" | |
f"User’s question: \"{user_input}\"\n" | |
) | |
) | |
human_msg = HumanMessage(content=user_input) | |
# (2) Call the LLM with this single system/human pair | |
llm_response = llm([system_msg, human_msg]) | |
llm_out = llm_response.content.strip() | |
# (3) Append the LLM output into the message history | |
ai_msg = AIMessage(content=llm_out) | |
new_msgs = prior_msgs.copy() + [ai_msg] | |
# (4) Attempt to parse that JSON | |
try: | |
parsed = json.loads(llm_out) | |
if isinstance(parsed, dict): | |
partial: AgentState = {"messages": new_msgs} | |
allowed_keys = { | |
"final_answer", | |
"wiki_query", | |
"web_search_query", | |
"ocr_path", | |
"excel_path", | |
"excel_sheet_name", | |
"audio_path" | |
} | |
for k, v in parsed.items(): | |
if k in allowed_keys: | |
partial[k] = v | |
return partial | |
except json.JSONDecodeError: | |
pass | |
# (5) If parsing failed, fall back to a safe “sorry” answer | |
return { | |
"messages": new_msgs, | |
"final_answer": "Sorry, I could not parse your intent." | |
} | |
# ─── 3) Revised finalize_node ─── | |
def finalize_node(state: AgentState) -> AgentState: | |
if state.get("final_answer") is not None: | |
return {"final_answer": state["final_answer"]} | |
# Re‐extract the last user question | |
question = "" | |
for msg in reversed(state.get("messages", [])): | |
if isinstance(msg, HumanMessage): | |
question = msg.content | |
break | |
# Build one monolithic context | |
combined = f"USER_QUESTION: {question}\n" | |
if sr := state.get("web_search_result"): | |
combined += f"WEB_SEARCH_RESULT: {sr}\n" | |
if orc := state.get("ocr_result"): | |
combined += f"OCR_RESULT: {orc}\n" | |
if exr := state.get("excel_result"): | |
combined += f"EXCEL_RESULT: {exr}\n" | |
# Note: your code already stores the audio transcription under "transcript" | |
if tr := state.get("transcript"): | |
combined += f"AUDIO_TRANSCRIPT: {tr}\n" | |
if wr := state.get("wiki_result"): | |
combined += f"WIKIPEDIA_RESULT: {wr}\n" | |
# Here we demand a JSON response with a single key "final_answer" | |
combined += ( | |
"Based on the above, respond with exactly one JSON object, and nothing else. " | |
"The JSON object must have exactly one key: \"final_answer\". " | |
"For example:\n" | |
"{\"final_answer\":\"42\"}\n" | |
"Do NOT include any explanation, markdown, or any extra whitespace outside the JSON object. " | |
"If the answer is multiple words, put them in a comma-separated string, e.g. \"red,green,blue\". " | |
"If the answer is a number, it must be digits only—e.g. \"725.00\".\n" | |
"If the answer is a list of items, put them in a comma-separated string, e.g. \"item1,item2,item3\". " | |
"If the user prompt asks you to do something, then do it " | |
) | |
# Debug print | |
# print("\n>>> finalize_node JSON‐strict prompt:\n" + combined + "\n<<< end prompt >>>\n") | |
llm_response = llm.invoke([SystemMessage(content=combined)]) | |
raw = llm_response.content.strip() | |
# print(">>> finalize_node got raw response:", raw) | |
try: | |
parsed = json.loads(raw) | |
return {"final_answer": parsed["final_answer"]} | |
except Exception as e: | |
# If the LLM did not return valid JSON, store the error so you can see it | |
# print(">>> finalize_node JSON parse error:", e, "raw was:", raw) | |
return {"final_answer": f"ERROR: invalid JSON from finalize_node: {raw}"} | |
# ─── 4) Wrap tools in a ToolNode ─── | |
def tool_node(state: AgentState) -> AgentState: | |
""" | |
Inspect exactly which tool‐key was set in `state` and call that function. | |
Returns only the partial state (with the tool's outputs) so that merge_tool_output can combine it. | |
""" | |
# We expect exactly one of these keys to be non‐empty: | |
# "web_search_query", "ocr_path", "excel_path"/"excel_sheet_name", "audio_path" | |
# Whichever is present, call the corresponding tool and return its result. | |
if state.get("wiki_query"): | |
out = wikipedia_search_tool(state) | |
return out | |
if state.get("web_search_query"): | |
# print(f">>> tools_node dispatching web_search_tool with query: {state['web_search_query']!r}") | |
out = web_search_tool(state) | |
return out | |
if state.get("ocr_path"): | |
# print(f">>> tools_node dispatching ocr_image_tool with path: {state['ocr_path']!r}") | |
out = ocr_image_tool(state) | |
return out | |
if state.get("excel_path"): | |
# We assume plan_node always sets both excel_path and excel_sheet_name together | |
# print(f">>> tools_node dispatching parse_excel_tool with path: {state['excel_path']!r}, sheet: {state.get('excel_sheet_name')!r}") | |
out = parse_excel_tool(state) | |
return out | |
if state.get("audio_path"): | |
# print(f">>> tools_node dispatching audio_transcriber_tool with path: {state['audio_path']!r}") | |
out = audio_transcriber_tool(state) | |
return out | |
# If we somehow reach here, no recognized tool key was set: | |
# print(">>> tools_node: no valid tool key found in state!") | |
return {} | |
# Add a node to store the previous state | |
def store_prev_state(state: AgentState) -> AgentState: | |
return {**state, "prev_state": state.copy()} | |
def merge_tool_output(state: AgentState) -> AgentState: | |
prev_state = state.get("prev_state", {}) | |
merged = {**prev_state, **state} | |
merged.pop("prev_state", None) | |
return merged | |
# ─── 5) Build the graph ─── | |
graph = StateGraph(AgentState) | |
# 5.a) Register nodes | |
graph.add_node("plan", plan_node) | |
graph.add_node("store_prev_state", store_prev_state) | |
graph.add_node("tools", tool_node) | |
graph.add_node("merge_tool_output", merge_tool_output) | |
graph.add_node("finalize", finalize_node) | |
# 5.b) Wire START → plan | |
graph.add_edge(START, "plan") | |
# 5.c) plan → conditional: if any tool key was set, go to "tools"; otherwise "finalize" | |
def route_plan(plan_out: AgentState) -> str: | |
# print what keys are present in plan_out | |
# print(f">> route_plan sees plan_out keys: {list(plan_out.keys())}") | |
if ( | |
plan_out.get("web_search_query") | |
or plan_out.get("ocr_path") | |
or plan_out.get("excel_path") | |
or plan_out.get("audio_path") | |
or plan_out.get("wiki_query") | |
): | |
# print(">> route_plan ➡️ tools") | |
return "tools" | |
# print(">> route_plan ➡️ finalize") | |
return "finalize" | |
graph.add_conditional_edges( | |
"plan", | |
route_plan, | |
{"tools": "store_prev_state", "finalize": "finalize"} | |
) | |
# 5.d) store_prev_state → tools | |
graph.add_edge("store_prev_state", "tools") | |
# 5.e) tools → merge_tool_output | |
graph.add_edge("tools", "merge_tool_output") | |
# 5.f) merge_tool_output → finalize | |
graph.add_edge("merge_tool_output", "finalize") | |
# 5.g) finalize → END | |
graph.add_edge("finalize", END) | |
compiled_graph = graph.compile() | |
# ─── 6) respond_to_input ─── | |
def respond_to_input(user_input: str, task_id) -> str: | |
""" | |
Seed state['messages'] with a SystemMessage (tools description) + HumanMessage(user_input). | |
Then invoke the graph; return the final_answer from the resulting state. | |
""" | |
system_msg = SystemMessage( | |
content=( | |
"You are an agent that must choose exactly one of the following actions:\n" | |
" 1) If the user's question can be answered directly by consulting Wikipedia, return exactly:\n" | |
" {\"wiki_query\":\"<search terms for Wikipedia>\"}\n" | |
" and nothing else. Use Wikipedia before any other tool.\n" | |
" 2) Only if Wikipedia cannot directly answer, perform a web search and return:\n" | |
" {\"web_search_query\":\"<search terms>\"}\n" | |
" and nothing else.\n" | |
" 3) If the user's question requires extracting text from an image, return:\n" | |
" {\"ocr_path\":\"<local image path>\"}\n" | |
" and nothing else.\n" | |
" 4) If the user's question requires reading a spreadsheet, return:\n" | |
" {\"excel_path\":\"<local .xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n" | |
" and nothing else.\n" | |
" 5) If the user needs an audio transcription, return:\n" | |
" {\"audio_path\":\"<local audio file path>\"}\n" | |
" and nothing else.\n" | |
" 6) If you already know the answer without using any tool, return exactly:\n" | |
" {\"final_answer\":\"<your concise answer>\"}\n" | |
" and nothing else.\n" | |
"If the user's prompt explicitly tells you to perform a specific action (for example, “translate this sentence”), then do it directly and return your result as {\"final_answer\":\"<your answer>\"} or the appropriate tool key if needed. \n" | |
"Do NOT include any additional keys, explanation, or markdown—only one JSON object with exactly one key." | |
) | |
) | |
human_msg = HumanMessage(content=user_input) | |
initial_state: AgentState = {"messages": [system_msg, human_msg], "task_id": task_id} | |
final_state = compiled_graph.invoke(initial_state) | |
return final_state.get("final_answer", "Error: No final answer generated.") | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
def __call__(self, question: str, task_id) -> str: | |
# print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# fixed_answer = "This is a default answer." | |
# print(f"Agent returning fixed answer: {fixed_answer}") | |
print() | |
print() | |
print() | |
print() | |
print(f"Agent received question: {question}") | |
print() | |
return respond_to_input(question, task_id) | |
# return fixed_answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text, task_id) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
# print("LangGraph version:", langgraph.__version__) | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
# import langgraph | |
# print("▶︎ LangGraph version:", langgraph.__version__) | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |