Spaces:
Sleeping
Sleeping
File size: 14,011 Bytes
805b803 e2b5ca7 805b803 e2b5ca7 805b803 e2b5ca7 54c2794 e2b5ca7 805b803 54c2794 805b803 54c2794 e4e8768 805b803 e4e8768 805b803 e4e8768 805b803 e2b5ca7 805b803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
"""
Gradio RAG -> MCQ app for HuggingFace Spaces
- Upload a PDF
- Chunk + embed using Together embeddings
- Store vectors in Chroma (local) and retrieve
- Call Together chat/completion to generate Vietnamese MCQs in JSON
Drop this file into a new HuggingFace Space (Gradio, Python). Add a requirements.txt (see README below) and set the secret TOGETHER_API_KEY in Space settings.
"""
import os
import json
import uuid
import tempfile
import pdfplumber
from together import Together
import chromadb
from chromadb.config import Settings
import gradio as gr
from typing import List
import shutil
tmp_dir = "./tmp"
# ---------- Config - can be overridden from UI ----------
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
DEFAULT_EMBEDDING_MODEL = "togethercomputer/m2-bert-80M-8k-retrieval"
DEFAULT_LLM_MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
DEFAULT_CHUNK_SIZE = 1200
DEFAULT_CHUNK_OVERLAP = 200
DEFAULT_K_RETRIEVE = 4
EMBED_BATCH = 64
# instantiate Together client (requires TOGETHER_API_KEY in env / HF Secrets)
if TOGETHER_API_KEY:
client = Together(api_key=TOGETHER_API_KEY)
else:
# allow local testing if user wants to set env var later
client = None
# -------- PDF -> text ----------
def extract_text_from_pdf(path: str) -> str:
text_parts = []
with pdfplumber.open(path) as pdf:
for page in pdf.pages:
page_text = page.extract_text()
if page_text:
text_parts.append(page_text)
return "\n\n".join(text_parts)
# -------- simple chunker ----------
def chunk_text(text: str, chunk_size=DEFAULT_CHUNK_SIZE, overlap=DEFAULT_CHUNK_OVERLAP) -> List[str]:
chunks = []
start = 0
L = len(text)
while start < L:
end = min(L, start + chunk_size)
chunk = text[start:end].strip()
chunks.append(chunk)
start = end - overlap
if start < 0:
start = 0
if start >= L:
break
return chunks
# -------- embeddings (Together) with batching ----------
def embed_texts(texts: List[str], model=DEFAULT_EMBEDDING_MODEL):
if client is None:
raise RuntimeError("Together client not initialized. Set TOGETHER_API_KEY in environment or Space secrets.")
embeddings = []
for i in range(0, len(texts), EMBED_BATCH):
batch = texts[i:i+EMBED_BATCH]
resp = client.embeddings.create(input=batch, model=model)
# resp.data is list; each item has .embedding
for item in resp.data:
embeddings.append(item.embedding)
return embeddings
# -------- chroma vectorstore setup / helpers ----------
def build_chroma_collection(name="pdf_docs", persist_directory="./chroma_db"):
# On Spaces, writes to the repo may be limited; chroma will attempt to use the path provided.
client_chroma = chromadb.Client(Settings(chroma_db_impl="duckdb+parquet", persist_directory=persist_directory))
# create or get collection
try:
collection = client_chroma.get_collection(name)
except Exception:
collection = client_chroma.create_collection(name)
return client_chroma, collection
def add_documents_to_vectorstore(collection, chunks: List[str], embeddings: List[List[float]]):
ids = [f"doc_{i}" for i in range(len(chunks))]
metadatas = [{"chunk_index": i} for i in range(len(chunks))]
# If collection already has docs with same ids, Chroma will append; it's common to recreate collection per-upload.
collection.add(ids=ids, documents=chunks, metadatas=metadatas, embeddings=embeddings)
# -------- retrieve top-k using chroma ----------
def retrieve_relevant_chunks(collection, query: str, k=DEFAULT_K_RETRIEVE, embedding_model=DEFAULT_EMBEDDING_MODEL):
q_emb = embed_texts([query], model=embedding_model)[0]
result = collection.query(query_embeddings=[q_emb], n_results=k, include=["documents", "metadatas", "distances"])
docs = result["documents"][0]
metas = result["metadatas"][0]
distances = result["distances"][0]
return list(zip(docs, metas, distances))
# -------- prompt template (Vietnamese) ----------
MCQ_PROMPT_VI = """
Bạn là một chuyên gia soạn câu hỏi trắc nghiệm (MCQ). SỬ DỤNG CHỈ các đoạn ngữ cảnh được cung cấp dưới đây (KHÔNG suy diễn/không thêm thông tin ngoài ngữ cảnh).
Tạo **một** câu hỏi trắc nghiệm có 4 lựa chọn (A, B, C, D), chỉ ra đáp án đúng (A/B/C/D) và viết 1 câu giải thích ngắn (1-2 câu).
**Bắt buộc:** output PHẢI LÀ **JSON duy nhất** theo schema sau (không có văn bản nào khác ngoài JSON):
{{
"question_id": "<mã duy nhất>",
"question": "<câu hỏi bằng tiếng Việt>",
"options": [
{{ "label": "A", "text": "..." }},
{{ "label": "B", "text": "..." }},
{{ "label": "C", "text": "..." }},
{{ "label": "D", "text": "..." }}
],
"answer": "A",
"explanation": "<giải thích ngắn bằng tiếng Việt>",
"source_chunks": [ "<chunk_index hoặc đoạn trích ngắn>", ... ]
}}
Ví dụ đầu ra (một mẫu JSON đúng; chỉ để mô tả định dạng):
{{
"question_id": "q_0001",
"question": "Nguyên tố nào là thành phần chính của vỏ trái đất?",
"options": [
{{ "label": "A", "text": "Sắt" }},
{{ "label": "B", "text": "Oxi" }},
{{ "label": "C", "text": "Cacbon" }},
{{ "label": "D", "text": "Nitơ" }}
],
"answer": "B",
"explanation": "Oxi là nguyên tố phong phú nhất trong vỏ trái đất, chủ yếu trong các oxit và khoáng vật.",
"source_chunks": [ "chunk_3" ]
}}
Đây là các đoạn ngữ cảnh (chỉ được phép dùng những đoạn này để soạn câu hỏi):
{context}
Hãy viết câu hỏi rõ ràng, không gây mơ hồ. Đảm bảo distractor (đáp án sai) là hợp lý và gây nhầm lẫn cho người học.
"""
# -------- call Together chat/completion ----------
def generate_mcq_with_rag(question_seed: str, retrieved_chunks, llm_model=DEFAULT_LLM_MODEL, temperature=0.0):
if client is None:
raise RuntimeError("Together client not initialized. Set TOGETHER_API_KEY in environment or Space secrets.")
context = ""
for i, (doc_text, meta, dist) in enumerate(retrieved_chunks):
snippet = doc_text.replace("\n", " ").strip()
context += f"[chunk_{meta.get('chunk_index', i)}] {snippet}\n\n"
prompt = MCQ_PROMPT_VI.format(context=context)
full_user = f"Yêu cầu (chủ đề / seed): {question_seed}\n\n{prompt}"
messages = [
{"role": "system", "content": "Bạn là một chuyên gia soạn câu hỏi trắc nghiệm bằng tiếng Việt. Chỉ trả về JSON, KHÔNG có lời giải thích thêm."},
{"role": "user", "content": full_user},
]
resp = client.chat.completions.create(
model=llm_model,
messages=messages,
temperature=temperature,
)
out = resp.choices[0].message.content
# try to parse JSON, fallback to extracting first {...}
try:
parsed = json.loads(out)
except Exception:
start = out.find("{")
end = out.rfind("}")
if start != -1 and end != -1:
try:
parsed = json.loads(out[start:end+1])
except Exception:
parsed = None
else:
parsed = None
# ensure question_id exists
if parsed and isinstance(parsed, dict):
if not parsed.get("question_id"):
parsed["question_id"] = f"q_{uuid.uuid4().hex[:8]}"
return parsed, out
# -------- high-level runner used by Gradio ----------
def generate_mcqs_from_pdf(pdf_path: str, seeds: List[str], questions_per_seed=1, chunk_size=DEFAULT_CHUNK_SIZE,
chunk_overlap=DEFAULT_CHUNK_OVERLAP, k_retrieve=DEFAULT_K_RETRIEVE,
embedding_model=DEFAULT_EMBEDDING_MODEL, llm_model=DEFAULT_LLM_MODEL,
temperature=0.0, persist_directory="./chroma_db"):
text = extract_text_from_pdf(pdf_path)
chunks = chunk_text(text, chunk_size=chunk_size, overlap=chunk_overlap)
# embed
chunk_embeddings = embed_texts(chunks, model=embedding_model)
# build vectorstore (recreate to avoid old data)
chroma_client, collection = build_chroma_collection(name="pdf_docs", persist_directory=persist_directory)
try:
collection.delete()
collection = chroma_client.create_collection("pdf_docs")
except Exception:
# some backends will raise; ignore and continue
pass
add_documents_to_vectorstore(collection, chunks, chunk_embeddings)
results = []
for seed in seeds:
for i in range(questions_per_seed):
retrieved = retrieve_relevant_chunks(collection, seed, k=k_retrieve, embedding_model=embedding_model)
parsed, raw = generate_mcq_with_rag(seed, retrieved, llm_model=llm_model, temperature=temperature)
if parsed is None:
item = {"seed": seed, "ok": False, "raw": raw}
else:
item = {"seed": seed, "ok": True, "mcq": parsed}
results.append(item)
return results
# -------- Gradio UI ----------
def save_uploaded_file(uploaded) -> str:
"""
uploaded may be:
- Path string (when running locally in some setups)
- File-like object with .name
- tuple/list returned by gradio in some versions
Returns saved file path.
"""
if uploaded is None:
raise ValueError("No file uploaded.")
# normalize to path
if isinstance(uploaded, str) and os.path.exists(uploaded):
src = uploaded
elif hasattr(uploaded, "name") and os.path.exists(uploaded.name):
src = uploaded.name
elif isinstance(uploaded, (tuple, list)) and len(uploaded) > 0:
# sometimes gradio returns (tempfile_path, original_name)
cand = uploaded[0]
if isinstance(cand, str) and os.path.exists(cand):
src = cand
else:
# fallback: try bytes
src = None
else:
src = None
dest_path = os.path.join(tmp_dir, os.path.basename(src) if src else "uploaded_doc")
if src:
shutil.copy(src, dest_path)
return dest_path
# last-resort: if 'uploaded' is bytes-like
try:
data = uploaded.read()
except Exception:
# try treat as bytes
data = uploaded if isinstance(uploaded, (bytes, bytearray)) else None
if data is None:
raise ValueError("Could not handle uploaded file type.")
with open(dest_path, "wb") as f:
f.write(data)
return dest_path
def ui_run(pdf_file, seeds_text, questions_per_seed, k_retrieve, chunk_size, chunk_overlap,
embedding_model, llm_model, temperature):
if pdf_file is None:
return "", None
# save uploaded file to temp path
try:
# Clear tmp folder and recreate
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
os.makedirs(tmp_dir)
except Exception:
pass
print(f"created {tmp_dir}")
try:
local_path = save_uploaded_file(pdf_file)
except Exception as e:
return {"error": f"Failed saving uploaded file: {e}"}
print(f"uploaded file {local_path}")
seeds = [s.strip() for s in seeds_text.split(",") if s.strip()]
if not seeds:
seeds = ["Lấy câu hỏi tổng quát về tài liệu"]
print(f"seeds: {seeds}")
print("generating mcqs")
try:
results = generate_mcqs_from_pdf(
pdf_path=local_path,
seeds=seeds,
questions_per_seed=questions_per_seed,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
k_retrieve=k_retrieve,
embedding_model=embedding_model,
llm_model=llm_model,
temperature=temperature,
persist_directory="./chroma_db"
)
except Exception as e:
return f"Lỗi khi sinh MCQ: {e}", None
print("mcqs generated")
out_json = json.dumps(results, ensure_ascii=False, indent=2)
# write output file for download
out_file = os.path.join(tmp_dir, "mcq_output.json")
with open(out_file, "w", encoding="utf-8") as f:
f.write(out_json)
print("json output dumped")
return out_json, out_file
with gr.Blocks(title="RAG -> MCQ (Tiếng Việt)") as demo:
gr.Markdown("# RAG -> MCQ Generator (Tiếng Việt)\nUpload PDF, set seeds (phân tách bằng dấu phẩy), và nhấn Generate.\nOutputs: JSON trả về các câu hỏi trắc nghiệm.)")
with gr.Row():
with gr.Column(scale=1):
pdf_in = gr.File(label="Upload PDF")
seeds_in = gr.Textbox(label="Seeds (chủ đề), phân tách bằng dấu phẩy", value="lập trình hướng đối tượng, kế thừa")
questions_per_seed = gr.Slider(label="Questions per seed", minimum=1, maximum=5, step=1, value=1)
k_retrieve = gr.Slider(label="K retrieve (số đoạn liên quan)", minimum=1, maximum=10, step=1, value=DEFAULT_K_RETRIEVE)
chunk_size = gr.Number(label="Chunk size (chars)", value=DEFAULT_CHUNK_SIZE)
chunk_overlap = gr.Number(label="Chunk overlap (chars)", value=DEFAULT_CHUNK_OVERLAP)
embedding_model = gr.Textbox(label="Embedding model", value=DEFAULT_EMBEDDING_MODEL)
llm_model = gr.Textbox(label="LLM model", value=DEFAULT_LLM_MODEL)
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.05, value=0.0)
btn = gr.Button("Generate MCQs")
with gr.Column(scale=1):
out_text = gr.Textbox(label="Raw JSON output", lines=20)
out_file = gr.File(label="Download JSON")
btn.click(fn=ui_run, inputs=[pdf_in, seeds_in, questions_per_seed, k_retrieve, chunk_size, chunk_overlap,
embedding_model, llm_model, temperature], outputs=[out_text, out_file])
if __name__ == "__main__":
demo.launch()
|