Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,98 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Load the
|
14 |
-
unet =
|
15 |
-
|
16 |
subfolder="unet",
|
17 |
-
torch_dtype=
|
18 |
)
|
19 |
-
unet.add_extra_conditions(["canny"])
|
20 |
|
21 |
-
# Add
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Load the ControlLoRA weights
|
25 |
pipe.load_lora_weights(
|
26 |
-
"models",
|
27 |
-
weight_name="40kHalf.safetensors"
|
28 |
-
adapter_name="control_lora"
|
29 |
)
|
30 |
|
31 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
with torch.no_grad():
|
33 |
-
# Get canny edges (you'll need to implement this)
|
34 |
-
# For now, let's assume the input image processing is handled separately
|
35 |
-
|
36 |
image = pipe(
|
37 |
prompt=prompt,
|
38 |
negative_prompt=negative_prompt,
|
39 |
num_inference_steps=steps,
|
40 |
guidance_scale=guidance_scale,
|
|
|
41 |
).images[0]
|
42 |
-
|
|
|
43 |
|
44 |
# Create the Gradio interface
|
45 |
with gr.Blocks() as demo:
|
46 |
with gr.Row():
|
47 |
with gr.Column():
|
|
|
48 |
prompt = gr.Textbox(label="Prompt")
|
49 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
|
|
|
|
|
|
50 |
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
|
51 |
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
|
52 |
generate = gr.Button("Generate")
|
53 |
|
54 |
with gr.Column():
|
|
|
55 |
result = gr.Image(label="Generated Image")
|
56 |
|
57 |
generate.click(
|
58 |
fn=generate_image,
|
59 |
-
inputs=[
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from diffusers import StableDiffusionPipeline
|
6 |
+
from model import UNet2DConditionModelEx, StableDiffusionControlLoraV3Pipeline
|
7 |
+
from PIL import Image
|
8 |
+
import os
|
9 |
+
from huggingface_hub import login
|
10 |
+
|
11 |
+
# Login using the token
|
12 |
+
login(token=os.environ.get("HF_TOKEN"))
|
13 |
+
|
14 |
+
# Initialize the models
|
15 |
+
base_model = "runwayml/stable-diffusion-v1-5"
|
16 |
+
dtype = torch.float32
|
17 |
|
18 |
+
# Load the custom UNet
|
19 |
+
unet = UNet2DConditionModelEx.from_pretrained(
|
20 |
+
base_model,
|
21 |
subfolder="unet",
|
22 |
+
torch_dtype=dtype
|
23 |
)
|
|
|
24 |
|
25 |
+
# Add conditioning
|
26 |
+
unet = unet.add_extra_conditions("ow-gbi-control-lora")
|
27 |
+
|
28 |
+
# Create the pipeline with custom UNet
|
29 |
+
pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
|
30 |
+
base_model,
|
31 |
+
unet=unet,
|
32 |
+
torch_dtype=dtype
|
33 |
+
)
|
34 |
|
35 |
# Load the ControlLoRA weights
|
36 |
pipe.load_lora_weights(
|
37 |
+
"models",
|
38 |
+
weight_name="40kHalf.safetensors"
|
|
|
39 |
)
|
40 |
|
41 |
+
def get_canny_image(image, low_threshold=100, high_threshold=200):
|
42 |
+
if isinstance(image, Image.Image):
|
43 |
+
image = np.array(image)
|
44 |
+
|
45 |
+
if image.shape[2] == 4:
|
46 |
+
image = image[..., :3]
|
47 |
+
|
48 |
+
canny_image = cv2.Canny(image, low_threshold, high_threshold)
|
49 |
+
canny_image = np.stack([canny_image] * 3, axis=-1)
|
50 |
+
return Image.fromarray(canny_image)
|
51 |
+
|
52 |
+
def generate_image(input_image, prompt, negative_prompt, guidance_scale, steps, low_threshold, high_threshold):
|
53 |
+
canny_image = get_canny_image(input_image, low_threshold, high_threshold)
|
54 |
+
|
55 |
with torch.no_grad():
|
|
|
|
|
|
|
56 |
image = pipe(
|
57 |
prompt=prompt,
|
58 |
negative_prompt=negative_prompt,
|
59 |
num_inference_steps=steps,
|
60 |
guidance_scale=guidance_scale,
|
61 |
+
image=canny_image
|
62 |
).images[0]
|
63 |
+
|
64 |
+
return canny_image, image
|
65 |
|
66 |
# Create the Gradio interface
|
67 |
with gr.Blocks() as demo:
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
71 |
prompt = gr.Textbox(label="Prompt")
|
72 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
73 |
+
with gr.Row():
|
74 |
+
low_threshold = gr.Slider(minimum=1, maximum=255, value=100, label="Canny Low Threshold")
|
75 |
+
high_threshold = gr.Slider(minimum=1, maximum=255, value=200, label="Canny High Threshold")
|
76 |
guidance_scale = gr.Slider(minimum=1, maximum=20, value=7.5, label="Guidance Scale")
|
77 |
steps = gr.Slider(minimum=1, maximum=100, value=50, label="Steps")
|
78 |
generate = gr.Button("Generate")
|
79 |
|
80 |
with gr.Column():
|
81 |
+
canny_output = gr.Image(label="Canny Edge Detection")
|
82 |
result = gr.Image(label="Generated Image")
|
83 |
|
84 |
generate.click(
|
85 |
fn=generate_image,
|
86 |
+
inputs=[
|
87 |
+
input_image,
|
88 |
+
prompt,
|
89 |
+
negative_prompt,
|
90 |
+
guidance_scale,
|
91 |
+
steps,
|
92 |
+
low_threshold,
|
93 |
+
high_threshold
|
94 |
+
],
|
95 |
+
outputs=[canny_output, result]
|
96 |
)
|
97 |
|
98 |
demo.launch()
|